Как добыть электричество: Как получить бесплатное электричество (мы нашли четыре способа)

Содержание

Как добыть электричество из тепла без турбин

Попытки приспособить феномен термо-ЭДС для получения электричества предпринимались неоднократно. Соответствующие устройства, называемые термоэлектрическими конверторами, довольно активно разрабатывались в течение последних 50-ти лет и даже нашли свое применение в некоторых областях промышленности. Однако для массового производства электроэнергии они явно непригодны. Во-первых, КПД подобных преобразователей не поднимается выше 7%, в то время как у паровых турбин это показатель достигает 20%. А главное — эффективной термопаре требуются редкие металлы — висмут, теллурий, платина и др. Это обстоятельство делает термоэлектрические конверторы очень дорогими и весьма непрактичными устройствами.

Однако специалисты из Калифорнийского университета сумели получить эффект термо-ЭДС с помощью искусственно синтезированной органической молекулы, соединяющей два металлических проводника. По мнению ученых, это означает настоящий прорыв в преобразовании тепла в электричество: органика очень дешева и проста в производстве. В ходе экспериментов ученые соединяли пары золотых проводников через прослойки из трех различных органических соединений — бензен-дитиола, дибензен-дитиола и трибензен-дитиола. Затем один из проводников начинали нагревать для создания разницы в температурах. На каждый градус разницы исследователи регистрировали рост напряжения в 8,7 мкВ для первого, 12,9 мкВ для второго, и 14,2 мкВ для третьего соединения, соответственно. Максимальная разница температур, достигнутая в ходе тестов, составила всего 30О по Цельсию.

«Эти цифры могут показаться не слишком значительным, однако они вполне доказывают правильность нашей концепции. Органическое термоэлектричество сделало свой первый шаг,» — заявил Прамод Редди (Pramod Reddy), один из участников исследования. В ближайшее время ученые намереваются протестировать ряд других органических соединений и металлов, чтобы добиться более выраженного эффекта термо-ЭДС.

Электричество из ничего как добыть энергию из воздуха и земли своими руками

Содержание статьи:

Почему электричество добывают из земли

Для того, чтобы получить электричество, нужно найти разность потенциалов и проводник. Соединив всё в единый поток, можно обеспечить себе постоянный источник электроэнергии.

Однако в действительности приручить разность потенциалов не так-то просто.

Природа проводит через жидкую среду электроэнергию огромной силы. Это разряды молнии, которые, как известно, возникают в воздухе, насыщенном влагой. Однако это всего лишь единичные разряды, а не постоянный поток электроэнергии.

Человек взял на себя функцию природной мощи и организовал перемещение электроэнергии по проводам. Однако это всего лишь перевод одного вида энергии в другой. Извлечение электричества непосредственно из среды остаётся преимущественно на уровне научных поисков, опытов из разряда занимательной физики и создания небольших установок малой мощности.

Проще всего извлекать электричество из твёрдой и влажной среды.

Что можно попробовать сделать

Давайте разберем два простейших способа, как добыть энергию из земли.

Принцип гальванической пары

Наша задача, найти разность потенциала, и в земле это сделать проще всего, так как она состоит из газов, воды и минеральных веществ. Грунт – это множество твердых частиц, между которыми находятся пузырьки воздуха и молекулы воды.

Элементарная единица почвы – мицелла. Это глинисто-гумусовый комплекс, обладающий разностью потенциалов. Эти частицы накапливают заряды по тому же принципу, что и вся планета, поэтому в почве постоянно протекают электрохимические реакции. И наша задача подключится к этой «сети».

Использовать можно два электрода, сделанных из разных металлов (медь и оцинкованное железо), то есть будет использоваться принцип, как в обычной солевой батарейке. Помимо гальванической пары нам потребуется электролит (раствор соли).

  • Погружаем электроды в грунт где-то на полметра, на расстоянии в 25 сантиметров друг от друга.
  • Устанавливаем вокруг кусок трубы нужного диаметра, чтобы оградить остальную почву от электролита, так как уровень соли не позволить расти в месте поливки никаким растениям.
  • Готовим насыщенный водный раствор соли и проливаем им землю между электродами.
  • Подключаем к выводам вольтметр спустя минут 15 и видим, что прибор показывает напряжение в 3В.

Итого, к полученному источнику питания можно подключить маломощную светодиодную лампу. Показания вольтметра будет разниться в зависимости от плотности грунта, его влажности и прочих показателей, так что на разных участках результаты будут отличными.

Способ с заземлением

Если ваш частный дом оборудован нормальным контуром заземления, то знайте, что часть потребляемого вами тока уходит через него в грунт, особенно если включено сразу много электроприборов.

В результате этого процесса, между нулевым проводом вашей сети и заземляющим возникает разница потенциалов, составляя от 15 до 20 Вольт. Подключив к ним низковольтную лампочку, вы заставите ее светиться

Интересно знать! Данный ток не будет регистрироваться электрическим счетчиком, так как фактически он через него уже прошел.

Схему можно усовершенствовать, установив трансформатор и выровняв тем напряжение. А включив в схему аккумулятор, можно запасать энергию, что позволит использовать схему, когда остальные приборы в доме «молчат».

Вариант рабочий, но подходит он только для частных домовладений, так как в квартирах нет нормального заземления, а использование водопроводных труб для этого законодательно запрещено. Тем более нельзя использовать для подключения землю и фазу, так как заземление окажется под напряжением в 220В – цена такого опыта, возможно, чья-то жизнь.

Бесплатное электричество из сетевого фильтра

Многие искатели бесплатного электричества наверняка находили в интернете версии о том, что удлинитель может стать источником нескончаемой свободной энергии, образовывая замкнутую цепь. Для этого следует взять сетевой фильтр с длиной провода не менее трех метров. Из кабеля сложить катушку, диаметром не более 30 см, подключить к розетке потребителя электроэнергии, изолировать все свободные отверстия, оставив только еще одну розетку для вилки самого удлинителя.

Далее сетевому фильтру необходимо дать изначальный заряд. Легче всего это сделать подключив удлинитель к функционирующей сети, а затем за доли секунды замкнуть в себе. Бесплатное электричество из удлинителя подойдет для питания осветительных приборов, но мощность свободной энергии в такой сети слишком мала для чего-то большего. А сам метод достаточно спорный.

Электроэнергия от нулевого провода

Как правило, для электропитания жилых домов используется трёхфазная сеть с глухозаземленной нейтралью. Отдельные потребители запитываются фазным напряжением от одной фазы и нулевого провода. Если в доме имеется надёжный контур заземления с низким сопротивлением, то в периоды интенсивного потребления электрической энергии, между нулевым проводом питающей сети и заземляющим проводником образуется разность потенциалов. Эта разность может достигать 12-15 В. Проблема заключается в нестабильности величины напряжения между нулем и заземлением, которая напрямую зависит от величины потребляемой домом мощности. Максимальное напряжение достигается только при пиковом токопотреблении.

Описанные выше способы получения электроэнергии вполне работоспособны. С применением импульсных электронных преобразователей, возможно получение напряжения любой величины. Однако, для реального использования в быту описанные способы не годятся ввиду очень низкой мощности подобных источников тока. Исключение составляет схема с металлическими электродами, но для достижения приемлемой мощности, потребуется занять большую площадь металлическими штырями и периодически поливать её раствором соли. Добыть электричество из земли в достаточном для использования количестве не так просто, как кажется. Несмотря на то, что магнитные и электрические поля окутывают планету, на сегодняшний день нет технической возможности использовать этот потенциал. Рассматривать такие способы как источник энергоснабжения дома нельзя. Своими руками можно соорудить разве что источник питания для пары светодиодов, часов или радиоприёмника с очень низким уровнем потребления мощности.

Читайте также:

  • Вихревое электрическое поле
  • Атмосферное электричество своими руками

Что ещё

Среди обычных, можно встретить и довольно необычные способы получения электричества. В последнее время идёт интенсивная работа учёных всего мира по развитию альтернативной энергетики. Мир ищет возможности для более широкого её использования.

Чуть ниже приводится небольшой обзор лучших способов и идей:

Термический генератор — преобразовывает тепловую энергию в электрическую. Встроен в отопительно-варочные печи.

Пьезоэлектрический генератор — работает на кинетической энергии. Внедряют в Танцполы, турникеты, тренажёры.

Наногенератор — применяется энергия колебаний человеческого тела при движении. Процесс отличается мгновенностью. Учёные работают над совмещением работы наногенератора и солнечной батареи.

Безтопливный генератор Капанадзе — работает на постоянных магнитах в роторе и бифлярных катушках в статоре. Мощность 1-10 кВт. За основу взято одно из изобретений Н.Тесла, но многие не верят в этот принцип. Ещё по одной из версий, настоящая технология аппарата удерживается в большом секрете.

Экспериментальные установки, которые работают на эфире — электро-магнитное поле. Пока ещё идут поиски, проверяются гипотезы, проводятся эксперименты.

Учёные подсчитали, что природных запасов, используемых в современной энергетике, может хватить ещё на 60 лет. Разработками в данной области занимаются лучшие умы. В Дании население пользуется ветровой энергетикой, составляющей 25%.

В России планируются проекты, по использованию восстанавливаемых источников в энергетической системе на 10%, а в Австралии на 8%. В Швейцарии большинство проголосовало за полный переход на альтернативную энергетику. Мир голосует за!

Мифы и реальность

На просторах интернета есть большое количество видеороликов, где люди зажигают от земли лампы мощностью 150 Вт, запускают электродвигатели и так далее. Еще больше есть различных текстовых материалов, подробно рассказывающих о земляных батареях. К подобной информации не рекомендуется относиться слишком серьезно, ведь написать можно что угодно, а перед съемкой видеоролика провести соответствующую подготовку.

Просмотрев или прочитав эти материалы, вы действительно можете поверить в разные небылицы. Например, что электрическое или магнитное поле Земли содержит океан дармовой электроэнергии, получение которой довольно легко. Правда заключается в том, что запас энергии действительно огромен, но вот извлечь ее вовсе не просто. Иначе никто бы уже не пользовался двигателями внутреннего сгорания, не обогревался природным газом и так далее.

Для справки. Магнитное поле у нашей планеты действительно существует и защищает все живое от губительного воздействия разных частиц, идущих от Солнца. Силовые линии этого поля проходят параллельно поверхности с запада на восток.

Если в соответствии с теорией провести некий виртуальный эксперимент, то можно убедиться, насколько непросто заполучить электричество из магнитного поля земли. Возьмем 2 металлических электрода, для чистоты эксперимента – в виде квадратных листов со сторонами 1 м. Один лист установим на поверхности земли перпендикулярно силовым линиям, а второй – поднимем на высоту 500 м и сориентируем его в пространстве таким же образом.

Теоретически между электродами возникнет разность потенциалов порядка 80 вольт. Тот же эффект будет наблюдаться, если второй лист расположить под землей, на дне самой глубокой шахты. А теперь представьте такую электростанцию – в километр высотой, с огромной площадью поверхности электродов. Кроме того, станция должна противостоять ударам молний, что обязательно будут бить именно по ней. Возможно, это реальность далекого будущего.

Тем не менее получить электричество от земли – вполне возможно, хотя и в мизерных количествах. Его может хватить на то, чтобы зажечь светодиодный фонарик, включить калькулятор или немного зарядить сотовый телефон. Рассмотрим способы, позволяющие это сделать.

Вечная лампа и электричество изничего

Рубрики: Поделки , физика , Электрический ток | Теги: Поделки, физика, Электрический ток | 1 марта 2011 | Svetlana

Уверен, редко кто знает, что электрический ток можно получить из… “пустоты”. Удивляться тут нечего — об этом и не было известно никому в мире вплоть до 1993 года, когда в отечественной лаборатории “Наномир” впервые подобным образом была извлечена электроэнергия. Сделано это было при помощи специального прибора, называемого резонатором.

Специалисты обнаружили, что резонансными свойствами обладают многие культовые предметы симметричной формы, например, кресты, звезды, короны, трезубцы, кусудамы….. Последние вы уже знаете из занятий оригами.

Полученный  ток был  очень слабым,  он регистрировался приборами на пределе чувствительности.   Еще  два  года не   удавалось  создать мощного источника энергии, так как незатухающие электрические колебания могут возникнуть  только в том резонаторе, степень симметрии которого превышает 100 000.   Как  же   сделать   лилию   или   трезубец  с   такой невероятной точностью? Ведь ошибка при размерах лепестков в 0,5 м не должна превышать нескольких микрон! Но если нельзя сделать точно столь сложный резонатор,   то, может быть, найдутся сведения о прямолинейных преобразователях? Кусудамы как раз и оказались подобным устройством. Они состоят из плоских элементов и обладают той формой, которую современными средствами можно изготовить с нужной точностью. Хотите попробовать? Станете обладателем вечной лампы, которую не нужно включать в розетку да и заменять не  придется — она не перегорает.

Правда, заказать кусудаму придется обратиться на завод, где есть точные станки, и изготовить ее из материала, слабо деформирующегося при нагревании.
Чтобы кус у дама стала преобразовывать энергию,  ее поверхность необходимо отполировать и покрыть с помощью напыления проводящим материалом.  Лучший проводник — серебро,   однако чистое серебро быстро покроется окислом, и “вечная” лампочка скоро погаснет. Дабы этого не случилось,  поверх скин-слоя серебра нужно напылить защитный слой другого металла в 100 раз тоньше. Одного грамма золота хватит, чтобы защитить несколько “вечных” лампочек по 300 ватт.

Сама кусу дама светить не будет. Она лишь превращает   внутреннюю   энергию   эфира   в электромагнитные колебания, которые, как это ни странно, не излучаются в виде электромагнитных  волн.    На  расстоянии  вытянутой   руки  их  уже невозможно зарегистрировать без высокочувствительного прибора. Кусудама является не излучающей антенной. Она — резонатор.

Как же превратить невидимые колебания электрического и магнитного полей в видимый свет? Здесь нам помогут знания об атомах, молекулах и кристаллах. Оказывается, достаточно в зону электромагнитных колебаний поместить кусочек кварца, и он засияет голубоватым светом. Это явление можно наблюдать, если минерал положить в микроволновую печь с прозрачной дверцей.
Может возникнуть вопрос: почему же тогда не светятся драгоценные камни, вставленные в золотую корону? Ведь она тоже резонатор. Тем, кто не догадался, напомню: степень симметрии резонатора должна быть больше 100 000. А у корон она, конечно, значительно ниже.
Журнал Левша №12-95г.

Как сделать бесплатное электричество дома

Бесплатное электричество в квартире должно быть мощным и постоянным, поэтому для полного обеспечения потребления потребуется мощная установка. Первым делом следует определить наиболее подходящий метод. Так, для солнечных регионов рекомендуется установка . Если солнечной энергии недостаточно тогда следует использовать ветряные или геотермальные электростанции. Последний метод особенно подходит для регионов расположенных в относительной близости к вулканическим зонам.

Определившись с методом получения энергии, следует также позаботиться о безопасности и сохранности электроприборов. Для этого домашняя электростанция должна быть подключена к сети через инвертор и стабилизатор напряжения для обеспечения подачи тока без резких скачков. Стоит также учитывать, что альтернативные источники достаточно капризны к погодным условиям. При отсутствии соответствующих климатических условий выработка электроэнергии остановиться или будет недостаточной. Поэтому следует обзавестись также мощными аккумуляторами для накопления на случай отсутствия выработки.

Готовые установки альтернативных электростанций широко представлены на рынке. Правда, их стоимость достаточно высока, но в среднем все они окупаются от 2-х до 5-ти лет. Сэкономить можно приобретая не готовую установку, а ее комплектующие, а затем уже самостоятельно спроектировать и подключить электростанцию.

Немного о том, что такое бесплатное электричество

На данный момент стоимость коммунальных услуг достаточно высока. Поэтому многие люди задумываются об источниках необходимых ресурсов, более дешевых, чем централизованный газ и электроэнергия.

Для обеспечения дому тепла с минимальной затратой средств был изобретен твердотопливный пиролизный котел. В данном агрегате газ образуется за счет перегорания твердого топлива. Этого прибора достаточно для обогрева целого дома.

Более того, многие твердотопливные печи имеют варочные поверхности и духовки. Используя такой прибор, вы можете вовсе отказаться от в свой дом.

С электричеством все намного сложнее. На данный момент в современных домах столько электроприборов, что обеспечить достаточное количество энергии альтернативными способами для них всех, действительно тяжело. Однако вы можете с помощью необычных способов получения бесплатной электроэнергии, сделать максимально дешевым обслуживание некоторой части электроприборов. Давайте посмотрим, что это за способы.

  • Самым распространенным считается электричество, полученное от энергии солнца;
  • Также пользуется дармовая энергия, получаемая из воздуха и атмосферы;
  • Очень интересно получение статического электричества из земли;
  • Электрический ток также можно вырабатывать из эфира;
  • На грани фантастики кажется халявное электричество из нечего;
  • Как оказалось, из магнитного поля тоже можно добывать электричество;
  • Возможна добыча электричества из дерева, воды и других подручных средств.

Некоторые из этих способов способны обеспечить электричеством лишь маленькую лампочку. Других хватит, чтобы заставить работать как минимум половину электроприборов в доме.

Домашний генератор электроэнергии «на халяву» создать невозможно. Ведь на материал для таких устройств нужно потратить некоторые деньги. Поэтому, говоря: «Выработка электричества на шару», мы имеем ввиду дешевое электричество, если, конечно, речь идет не про Anticlove.

Добывать бесплатное электричество можно с помощью простых технических приспособлений

Сегодня мы расскажем вам о нескольких, самых перспективных альтернативных способах добычи электричества. Также мы поговорим о возможности получения электроэнергии из нечего.

Известные способы добычи электричества

В первом случае получение электричества из земли осуществляется с помощью двух стержней, изготовленных из разнородных металлов. Данный способ никак не связан с электрическим или магнитным полем Земли. Стержни используются в качестве гальванической пары, помещенной в солевой раствор. Если проводить эксперимент в чистом виде, то на концах металлических прутков, погруженных в раствор электролита, образуется разность потенциалов, то есть, электрический ток.

Величина получаемого тока будет разной в зависимости от таких факторов, как размеры электродов, характеристики электролита, глубина закладки и прочее.

По такой же схеме можно получить электричество из земли. Для этой цели берутся стержни из меди и алюминия, которые будут использоваться в качестве гальванической пары. Их нужно заглубить в землю примерно на 50 см, расположив на расстоянии 20-30 см друг от друга. На площадь грунта, расположенную между стержнями, выливается большое количество солевого раствора, и уже через 5-10 минут можно проводить контрольные замеры с помощью электронного вольтметра.

Вольтметр показывает разные значения, максимальный результат составил 3 вольта. Раствор электролита готовится из дистиллированной воды и поваренной соли.

Второй вариант добычи тока также не связана с магнитным полем Земли. Суть заключается в извлечении электричества, стекающего по проводу «земля» во время максимального энергопотребления. В этом процессе участвует и проводник «ноль».

Всем известно, что подача напряжения потребителям осуществляется по фазному и нулевому проводам. При наличии третьего провода, соединенного с контуром заземления, между ним и нулевым проводником нередко возникает напряжение, иногда доходящее до 15 вольт. Подобное состояние можно определить с помощью лампы накаливания на 12 вольт, подключенной к обоим проводникам. Другим способом зафиксировать невозможно, поскольку приборы учета никак на это не реагируют и ток, идущий от «земли» к нулю не определяют.

Данный способ непригоден для квартиры, поскольку в них как правило отсутствует заземление, способное выполнить свою функцию. Подобные эксперименты хорошо получаются в частных домах с классическим заземляющим контуром. Схема подключения осуществляется от нулевого проводника к нагрузке и далее – к проводу заземления. В процессе добычи электричества из земли своими руками, некоторые домашние электрики используют трансформаторы для сглаживания токовых колебаний и затем подключают наиболее оптимальную нагрузку.

Категорически запрещается, чтобы фаза подключалась вместо нулевого проводника, во избежание смертельно опасных ситуаций.

Электричество от земли и нулевого провода

Данное явление тоже возникает не от магнитного поля Земли, а вследствие того, что часть тока «стекает» через заземление в часы наибольшего потребления электроэнергии. Большинству пользователей известно, что напряжение для дома подается через 2 проводника: фазный и нулевой.

Если имеется третий проводник, присоединенный к хорошему заземляющему контуру, то между ним и нулевым контактом может «гулять» напряжение до 15 В. Этот факт можно зафиксировать, включив меж контактами нагрузку в виде лампочки на 12 В. И что характерно, проходящий из земли на «ноль» ток абсолютно не фиксируется приборами учета.

Воспользоваться таким бесплатным напряжением в квартире затруднительно, поскольку надежного заземления там не найти, трубопроводы таковым считаться не могут. А вот в частном доме, где априори должен быть заземляющий контур, электричество получить можно.

Для подключения применяется простая схема: нулевой провод – нагрузка – земля. Некоторые умельцы даже приспособились сглаживать колебания тока трансформатором и присоединять подходящую нагрузку.

Внимание! Не идите на поводу у «добрых» советчиков, предлагающих вместо нулевого проводника использовать фазный! Дело в том, что при подобном подключении фаза и земля дадут вам 220 В, но прикасаться к заземляющей шине смертельно опасно. Особенно это касается «умельцев», проделывающих подобные вещи в квартирах, присоединяя нагрузку к фазе и батарее

Они создают опасность поражения током для всех соседей.

Альтернатива Марка

Устройство также известно как генератор электричества из воздуха TPU, разработанный Стивеном Марком. Он позволяет получать различные количества электричества, чтобы питать разные цели, и делается это без необходимости подпитки из внешней среды. Но из-за некоторых особенностей она всё ещё не работает. Такая проблемка не помешает, тем не менее, рассказать вам о ней.

Принцип работы простой: в кольце создается резонанс магнитных вихрей и токов, что способствует появлению токовых ударов в металлических отводах. Чтобы собрать такой тороидальный генератор, позволяющий получить электричество из воздуха своими руками, вам нужно:

  1. Основание, в качестве которого может выступить кусок фанеры, похожий на кольцо, полиуретан или отрезок резины; 2 коллекторные катушки (внешняя и внутренняя) и катушка управления. В качестве основания наилучшим образом подойдёт кольцо, у которого наружный диаметр 230 миллиметров, а внутренний 180.
  2. Намотайте катушку внутри коллектора. Намотка должна быть трехвитковой и делаться многожильным проводом, сделанным из меди. Теоретически, чтобы запитать лампочку, вам должно хватить одного витка как на фотографиях. Если не получилось – сделайте ещё.
  3. Управляющих катушек необходимо 4 штуки. Каждую из них следует разместить под прямым углом, чтобы не создавать помех магнитному полю. Намотка должна быть плоской, а зазор между витками не должен превышать 15 миллиметров. Меньше тоже нежелательно.
  4. Чтобы намотать управляющие катушки, используйте одножильный провод. Необходимо сделать не менее 21 витка.
  5. Для последней катушки используйте медный провод с изоляцией, который следует наматывать по всей площади. Основное конструирование завершено.

Соедините выводы, предварительно установив между землёй и обратной землёй конденсатор на десять микрофарад. Чтобы запитать схему, используйте мультивибраторы и транзисторы. Подбирать их придется опытным путём ввиду того, что нужны разные характеристики для разных конструкций.

Мифы и реальность

Попытки рядовых граждан самостоятельно, в обход государственных тарифов, «добыть» электричество, обросли множеством слухов и домыслов:

  • Главный миф, связанный с самостоятельным получением энергии из земли, звучит так: это электричество вечно.

Опровержение: для того, чтобы в принципе извлечь электричество из земли, необходимо выполнение множества условий, в числе которых – особые качества почвы, металлический штырь или стержень, вкопанный в землю на достаточном расстоянии, и неокисляемые провода.

Ни одно из этих условий не может быть выполнено идеально, так что электричество, добываемое таким образом, совсем не вечно.

  • Миф второй: энергия земли бесплатна.

Опровержение: частично это так: человек может делать со своим личным земляным участком все, что угодно. Но для того, чтобы получить хоть какой-то электрический заряд, нужно много земли.

  • Миф третий: электричество, которое можно получить благодаря земле, имеет огромную мощность.

Опровержение: выходной мощности электричества, получаемого из земли, хватает на очень медленную зарядку простенького мобильного телефона или зажигание небольшой лампочки. Для того, чтобы вскипятить электрический чайник, зарядить ноутбук или включить холодильник, понадобится столько земли, металлических штырей и проводов, что одной семье нужны будут безграничные наделы и финансы.

Альтернативные и сомнительные методы

Многим известна история про незатейливого дачника, которому якобы удалось получить халявную электроэнергию из пирамид. Этот человек утверждает, что построенные им из фольги пирамиды и аккумулятор в качестве накопителя помогают освещать весь приусадебный участок. Хотя выглядит это маловероятным.

Другое же дело, когда исследования ведут учёные мужи. Здесь уже есть над чем задуматься. Так, проводятся опыты по получению электричества из продуктов жизнедеятельности растений, которые попадают в почву. Подобные опыты вполне можно проводить и в домашних условиях. Тем более что полученный ток не опасен для жизни.

В некоторых зарубежных странах, там, где есть вулканы, их энергию с успехом используют для добычи электроэнергии. Благодаря специальным установкам работают целые заводы. Ведь полученная энергия измеряется мегаваттами. Но особо интересно то, что добыть электричество своими руками подобным способом могут и рядовые граждане. К примеру, некоторые используют энергию тепла вулкана, которую совсем несложно трансформировать в электрическую.

Многие учёные бьются над поиском добычи альтернативных методов энергии. Начиная от использования процессов фотосинтеза и заканчивая энергиями Земли и солнечными ветрами. Ведь в век, когда электроэнергия особенно востребована, это как нельзя кстати. А имея интерес и некоторые знания, каждый может внести свой вклад в изучение получения халявной энергии.

Генератор Стивена Марка

Есть еще одна интересная и рабочая схема — генератор TPU, позволяющий добыть электричество из атмосферы. Ее придумал знаменитый исследователь Стивен Марк.

С помощью этого прибора можно накопить определенный электрический потенциал для обслуживания бытовых приборов, не задействуя при этом дополнительную подпитку. Технология была запатентована, в результате чего сотни энтузиастов пытались повторить опыт в домашних условиях. Однако из-за специфических особенностей ее не удалось пустить в массы.

Работа генератора Стивена Марка осуществляется по простому принципу: в кольце устройства происходит образование резонанса токов и магнитных вихрей, которые вызывают появление токовых ударов. Для создания тороидального генератора нужно придерживаться следующей инструкции:

  1. В первую очередь следует подготовить основание прибора. В качестве него можно использовать отрезок фанеры в форме кольца, кусок резины или полиуретана. Также необходимо найти две коллекторные катушки и катушки управления. В зависимости от чертежа размеры конструкции могут отличаться, но оптимальным вариантом являются следующие показатели: наружный диаметр кольца составляет 230 мм, внутренний — 180 мм. Ширина составляет 25 мм, толщина — 5 мм.
  2. Необходимо намотать внутреннюю коллекторную катушку, используя многожильный медный провод. Для лучшего взаимодействия применяют трехвитковую намотку, хотя специалисты уверены, что и один виток сможет запитать лампочку.
  3. Также следует подготовить 4 управляющие катушки. При размещении этих элементов нужно соблюдать прямой угол, иначе могут появиться помехи магнитному полю. Намотка этих катушек плоская, а зазор между витками составляет не больше 15 мм.
  4. Осуществляя намотку управляющих катушек, принято задействовать одножильные провода.
  5. Чтобы выполнить установку последней катушки, следует применить заизолированный медный провод, который наматывают по всей площади основания конструкции.

После выполнения перечисленных действий остается соединить выводы, установив перед этим конденсатор на 10 микрофарад. Питание схемы осуществляется с помощью скоростных транзисторов и мультивибраторов, которые подбираются с учетом размеров, типа проводов и других конструкционных особенностей.

Бесплатная энергия из атмосферного электричества

Сейчас существует всего два способа, с помощью которых можно добыть электричество из воздуха – с помощью ветрогенераторов и с помощью полей, которые пронизывают атмосферу. И если ветряные мельницы видели уже многие и примерно представляют, как они работают, и откуда берется энергия, то второй тип приборов вызывает множество вопросов.

Интересные открытия и машины принадлежат двум изобретателям – Джону Серлу и Сергею Годину. И большая часть экспериментов, которые проводят любители у себя дома, основывается на одной из двух схем. Как же этим двум людям удалось получить энергию из воздуха?

Джон Серл утверждает, что ему удалось создать вечный двигатель. В центр своей конструкции он поместил мощный многополюсный магнит, а вокруг него намагниченные ролики. Под действием электромагнитных сил ролики катятся, стараясь обрести стабильное положение, однако центральный магнит устроен так, что ролики никогда этого положения не достигают. Конечно, рано или поздно такая конструкция все равно должна остановиться, если не придумать способ подпитывать ее энергией извне. Во время одного из испытаний машина Серла проработала без остановки два месяца. Учёный утверждал, что ему удалось запатентовать способ подпитки своего прибора прямо от энергии вселенной, которая, как он считал, содержится в каждом кубическом сантиметре пространства. В это трудно поверить, но первую версию своего двигателя Джон Серл запатентовал еще в 1946 году.

Будучи собранным, это устройство приходило в самовращение и вырабатывало электрическую мощность. На Серла мгновенно посыпались заказы от желающих приобрести такую машину, способную черпать энергию из воздуха, однако разбогатеть на своем изобретении ученый не успел. Оборудование из лаборатории вывезли в неизвестном направлении, а его самого посадили в тюрьму по обвинению в краже электричества. Независимый британский суд просто не смог поверить, что всю электроэнергию для освещения своего дома Джон Серл производил сам.

Другой аппарат, внешне похожий на летающую тарелку, был обнаружен в подмосковном дачном поселке, и это первый в мире генератор электричества, которому не требуется топливо. Его изобретатель Сергей Годин уверен, что такого агрегата вполне хватит, чтобы обеспечить электричеством всех своих соседей по даче. Такое устройство, будучи установлено в подвале дома, полностью бы обеспечило большой современный жилой дом электричеством. Физик уверен, что на земле существует субстанция, до сих пор неизвестная современным учёным. Сергей Годин называет это явление эфиром.

Где взять бесплатное электричество

Добыть электричество можно из всего. Единственное условие: необходим проводник и разница потенциалов. Ученые и практики постоянно ищут новые альтернативные источники электричества и энергии, которые будут бесплатными. Следует уточнить, что под бесплатными подразумевается отсутствие платы за централизованное энергоснабжение, но само оборудование и его установка все же стоит средств. Правда, такие вложения с лихвой окупаются впоследствии.

На данный момент бесплатная электроэнергия добывается из трех альтернативных источников:

Методика получения электричестваОсобенности выработки энергии
Солнечная энергияТребует установки солнечных батарей или коллектора из стеклянных трубок. В первом случае электричество будет вырабатываться благодаря постоянному движению электронов под воздействием солнечных лучей внутри батареи, во втором — электричество будет преобразовано из тепла от нагрева.
Ветряная энергияПри ветре лопасти ветряка начнут активно вращаться, вырабатывая электричество, которое может сразу поставляться в аккумулятор или сеть.
Геотермальная энергияМетод заключается в получение тепла из глубины грунта и его последующей переработки в электроэнергию. Для этого пробуривают скважину и устанавливают зонд с теплоносителем, который будет забирать часть постоянного тепла, существующего в глубине земли.

Такие методы используются как обычными потребителями, так и в широких масштабах. Например, огромные геотермальные станции установлены в Исландии и вырабатывают сотни МВт.

loading…

Электричество из земли своими руками

Сначала на поверхности земли устанавливают проводник, который заземляют. Затем нужно подумать об устройстве, помогающем покинуть электронам проводник, то есть эммитере. Для этого можно использовать высоковольтный генератор или устройство, названное катушкой Тесла. Именно от его работы будет зависеть конечная сила тока.

Верхняя точка находится на определенном уровне потенциала земного электрического поля, которое начнет двигать электроны вверх к ней — туда, где находится эмиттер. Он будет освобождать электроны из металла проводника, а они, уже в качестве ионов, отправятся в атмосферу. Движение продолжается до тех пор, пока там потенциал не выровняется с электрическим полем Земли, то есть пока не будет достигнута нейтрализация.

Так природная электрическая цепь замыкается, и в нее включается потребитель энергии.

Следует учитывать, что электрическое поле находится выше заземленных проводников. В их роли выступают все постройки, деревья, линии электропередач и так далее. Поэтому чтобы установка работала в городских условиях, ее необходимо поднять выше расположенных поблизости крыш, шпилей и заземлителей.

Можно так представить электричество из земли. Схема перед вами.

Что необходимо для создания простой станции получения энергии

Как же осуществить получение электричества из воздуха? Минимум, необходимый для забора электроэнергии из воздуха, – земля и металлическая антенна. Между этими проводниками с разной полярностью устанавливается электрический потенциал, который накапливается на протяжении длительного времени. Учитывая непостоянность величины, рассчитать её силу почти невозможно. Подобная станция работает как молния: разряд тока происходит через определённое время, когда достигается максимальный потенциал. Таким способом можно получить довольно много электроэнергии, чтобы поддерживать работу электрической установки.

Альтернатива

В 1901 году знаменитый, гениальный учёный Николай Тесла сконструировал огромную башню Ворденклиф в Нью-Йорке. Компания JP Morgan взяла на себя финансовую часть проекта. Тесла хотел осуществить бесплатную радиосвязь и снабдить человечество бесплатным электричеством. Морган же просто ожидал беспроводную международную связь.

Идея бесплатного электричества привела в ужас промышленные и финансовые «Тузы». Желающих революций в мировой экономике не оказалось, все держались за сверхприбыли. Поэтому проект свернули.

Так что же построил Тесла? Как он собирался сделать бесплатное электричество? В XXI веке всё большую поддержку получает идея альтернативной энергетики, работающей на других источниках. Своеобразным оппонентом нефти, углю, газу здесь выступают возобновляемые ресурсы Земли и других планет.

Из чего можно получить бесплатное электричество? Солнечный свет, энергия ветра, земли, использование приливов и отливов, мускульная энергия человеческого тела могут изменить будущее планеты. Уйдут в прошлое трубопроводы, саркофаги реакторов. Многие государства смогут освободить свою экономику от необходимости закупать дорогостоящие источники электричества.

Поиску альтернативных источников энергии, которые легко возобновляются, уделяют большое внимание. В последние десятилетия человечество волнуют проблемы чистоты экологии, экономичности ресурсов

Полезные советы

Создавая прибор по добыче электроэнергии из воздуха, необходимо помнить об определенной опасности, которая связана с риском появления принципа молнии

Чтобы избежать непредвиденных последствий, важно соблюдать правильность подключения, полярность и прочие важные моменты.

Работы по изготовлению устройства для получения доступного электричества не требуют больших финансовых затрат или усилий. Достаточно подобрать простую схему и в точности следовать пошаговому руководству.

Конечно же, сверхмощный прибор своими руками создать проблематично, так как он требует более сложных схем и может обойтись в кругленькую сумму. А вот что касается изготовления простых механизмов, то такую задачу можно реализовать в домашних условиях.

Способ с нулевым проводом

Напряжение в жилой дом подается с использованием двух проводников: один из них фаза, второй – нуль. Если дом оборудован качественным заземляющим контуром, в период интенсивного потребления электроэнергии часть тока уходит через заземление в грунт. Подключив к нулевому проводу и заземлению лампочку на 12 В, вы заставите ее светиться, поскольку между контактами нуля и «земли» напряжение может достигать 15 В. И этот ток электросчетчиком не фиксируется.

Добыча электричества с помощью нулевого провода

Схема, собранная по принципу ноль – потребитель энергии – земля, вполне рабочая. При желании для выравнивания колебаний напряжения можно использовать трансформатор. Недостатком является нестабильность появления электричества между нулем и заземлением – для этого требуется, чтобы дом потреблял много электроэнергии.

Обратите внимание! Данный способ добывать даровое электричество пригоден только в условиях частного домовладения. В квартирах нет надежного заземления, а использовать в этом качестве трубопроводы систем отопления или водоснабжения нельзя

Тем более запрещено соединять контур заземления с фазой для получения электричества, так как заземляющая шина оказывается под напряжением 220 В, что смертельно опасно.

Несмотря на то, что такая система задействует для работы землю, ее нельзя отнести к источнику земной электроэнергии. Как добыть энергию, используя электромагнитный потенциал планеты, остается открытым.

Способ с двумя электродами

Простейший способ получить в домашних условиях электроэнергию – использовать принцип, по которому устроены классические солевые батарейки, где использована гальваническая пара и электролит. При погружении стержней, выполненных из разных металлов, в раствор соли, на их концах образуется разность потенциалов.

Мощность такого гальванического элемента зависит от целого ряда факторов, включая:

  • сечение и длину электродов;
  • глубину погружения электродов в электролит;
  • концентрацию солей в электролите и его температуру и т.д.

Чтобы получить электричество, требуется взять два электрода для гальванической пары – один из меди, второй из оцинкованного железа. Электроды погружают в грунт приблизительно на глубину в полметра, установив их на расстоянии около 25 см, относительно друг друга. Грунт между электродами следует хорошо пролить раствором соли. Замеряя вольтметром напряжение на концах электродов спустя 10-15 минут, можно обнаружить, что система дает бесплатно ток около 3 В.

Добыча электричества с помощью 2-х стержней

Если провести ряд экспериментов на разных участках, выяснится, что показания вольтметра варьируются в зависимости от характеристик грунта и его влажности, размеров и глубины установки электродов. Для повышения эффективности рекомендуется ограничить при помощи куска трубы подходящего диаметра контур, куда будет заливаться солевой раствор.

Внимание! Требуется использовать насыщенный электролит, а такая концентрация соли делает почву непригодной для роста растений.

Ответ читателю

Спасибо Вам, Александр, за очень интересный вопрос. Данная тема, поверьте, волнует не только Вас, но и большое количество жителей наше планеты, в том числе и автора данного материала и причин тому несколько.

  • Во-первых, это постоянный рост цен на энергоносители, что очень сильно толкает вверх инфляцию на прочие товары, из-за чего мы вынуждены вращаться как белки в колесе, постоянно наращивая производства, плюс современные банковские системы, но не будем об этом.
  • Во-вторых, многим не дает покоя окутанная тайной биография знаменитого сербского изобретателя Никола Тесла, который, по слухам, смог построить полноценную электростанцию, которая смогла обеспечить электрической энергией, взятой из эфира, целы город, но технологию заблокировали царившие в то время в Америке промышленники.
  • В-третьих, существуют рабочие схемы, которые мы и обсудим сегодня, а, как известно, все, что работает, можно усовершенствовать.

В интернете можно найти огромное количество видео, в которых домашние умельцы демонстрируют свои установки, которые в качестве источника энергии используют магнитное и электрическое поле Земли. Кто-то даже умудряется такие агрегаты продавать, но видеть в работе подобные устройства нам не приходилось, что, однако, не отрицает их реального существования.

Ходят слухи, что некая швейцарская компания, чье название автор успешно позабыл, официально продает за баснословные деньги компактные аппараты, с условием обслуживания только ее специалистами, компактные установки, способные обеспечивать электричеством полноценный дом со всеми приборами в нем.

Однако стоит понимать, что большинство таких фото и видео материалов являются подделками, с целью получения выгоды или славы, а отговорки, мол, выложить схемы устройств не можем, так как тут же изобретателей «прессанут» спецслужбы, можно считать лишь отговорками. При желании в интернет можно запустить что угодно, и вычистить это полностью будет нереально, хотя отрицать до конца теорию заговора, мы не хотим. Мало ли…

Но все это лирика, давайте поговорим, что мы можем соорудить своими руками, и может ли такая энергия пригодиться в быту.

Что правда, а что миф

Пробуем зажечь лампочку

Итак, можно ли получить электричество, использовав электрическое магнитное поле Земли?

Теоретически да! Земля – это, по сути, один огромный конденсатор, имеющий сферическую форму.

  • На внутренней поверхности планеты происходит накопление отрицательного заряда, тогда как на наружной – положительного.
  • Изолятор между ними – это атмосфера, через которую постоянно протекает ток, а разница потенциалов при этом сохраняется;
  • Потерянные заряды восстанавливаются за счет магнитного поля, являющегося, по сути, генератором.

Как же извлечь электричество из этой нехитрой схемы? Устройство должно состоять из следующих элементов:

  • Катушка Тесла (эмиттер) — генератор высоковольтный, который позволяет электронам покидать проводник;
  • Проводник;
  • Контур заземляющий, соединенный с проводником.

Дальнейшая инструкция в теории проста! В идеале, нам осталось подключиться к полюсу генератора и позаботится о качественном заземлении, но…

  • Самая высока точка установки, где располагается эмиттер, должна расположиться на такой высоте, чтобы потенциал электрического поля Земли, а точнее его разница, поднимал электроны вверх по проводнику.
  • Эмиттер, в виде ионов, станет их высвобождать в атмосферу и будет это происходить до тех пор, пока уровень потенциалов не сравняется.
  • К такой цепи могут подключаться потребители тока, причем их количество будет зависеть от мощности катушки Тесла.
  • Да, чуть не забыли! Нужно учесть высоту всех заземленных проводников в округе (деревья, металлические столбы, высотки и прочее) и сделать установку выше их всех, что делает затею практически нереальной к исполнению.

Реальность или миф

Когда речь идет о получении энергии из воздуха, большинство людей думает, что это откровенный бред. Однако добыть энергоресурсы буквально из ничего вполне реально. Более того, в последнее время на тематических форумах появляются познавательные статьи, чертежи и схемы установок, позволяющих реализовать такой замысел.

Принцип действия системы объясняется тем, что в воздухе содержится какой-то мизерный процент статистического электричества, только его нужно научится накапливать. Первые опыты по созданию такой установки проводились еще в далеком прошлом. В качестве яркого примера можно взять знаменитого ученого Николу Теслу, который неоднократно задумывался о доступной электроэнергии из ничего.

Талантливый изобретатель уделил этой теме очень много времени, но из-за отсутствия возможности сохранить все опыты и исследования на видео большинство ценных открытий осталось тайной. Тем не менее ведущие специалисты пытаются воссоздать его разработки, следуя найденным старым записям и свидетельствам современников. В результате многочисленных опытов ученые соорудили машину, которая открывает возможность добыть электричество из атмосферы, то есть практически из ничего.

Тесла доказал, что между основанием и поднятой пластиной из металла присутствует определенный электрический потенциал, являющий собой статическое электричество. Также ему удалось определить, что этот ресурс можно накапливать.

Затем ученый сконструировал сложный прибор, способный накапливать небольшой объем электрической энергии, используя лишь тот потенциал, который находится в воздухе. Кстати, исследователь определил, что незначительное количество электроэнергии, которая содержится в воздухе, появляется при взаимодействии атмосферы с солнечными лучами.

Рассматривая современные изобретения, следует обратить внимание на устройство Стивена Марка. Этот талантливый изобретатель выпустил тороидальный генератор, который удерживает намного больше электроэнергии и превосходит простейшие разработки прошлых времен

Полученного электричества вполне хватает для функционирования слабых осветительных приборов, а также некоторых бытовых устройств. Работа генератора без дополнительной подпитки осуществляется в течение большого промежутка времени.

Электричество из земли своими руками

Тем не менее многие люди не оставляют попыток извлечь электричество из земли, чтобы облегчить или изменить свою жизнь, и их не стоит останавливать, ведь самые важные открытия в истории человечества совершались именно упорными людьми, влюбленными в свои идеи.

Существует рейтинг самых популярных способов дешевого и быстрого получения электричества из земли.

Нулевой провод – нагрузка – почва

Переменный ток, благодаря которому в квартирах питаются все электрические приборы, поступает в жилища через два проводника: ноль и фазу. Из-за заземления большое количество энергии уходит в почву. Конечно, никому не хочется платить за то, что не удается использовать полностью. Поэтому предприимчивые люди уже давно поняли, как при помощи нулевого провода можно извлекать из земли энергию.

Этот способ основан на том, что земля в силу своих физических свойств является одновременно накопителем энергии и ее проводником.

Схема подземной прокладки кабеля

Чтобы извлечь электричество, нужно создать простейшую цепь.

  • На достаточном расстоянии в землю вкапывается два металлических кола, один из которых является катодом, а второй – анодом, в результате чего появится энергия напряжением от 1 до 3 В. Сила тока в этом случае будет ничтожно малой.
  • Чтобы увеличить напряжение и силу тока, придется на участке с огромной площадью вбить множество штырей, как последовательно, так и параллельно соединенных между собой. Последовательное соединение повышает напряжение, а параллельное – силу тока.
  • Когда напряжение достигнет 20-30 В, к цепи необходимо подключить простейший трансформатор для увеличения напряжения при выходе и аккумулятор для накопления и стабилизации электрической энергии. Последний этап – трансформация постоянного тридцати вольтажного тока в переменный, напряжением в 220 В.

Цинковый и медный электрод

Это самый простой, дешевый и эффективный на данный момент способ получения электрической энергии, именно по этому принципу устроены привычные всем батарейки.

Первым делом необходимо изолировать какое-то количество почвы, чтобы создать в ней максимально кислую среду. Затем подключить к этой изолированной земле цинковый и медный электроды. На выходе действительно получается электроэнергия. Этот принцип получения энергии во многом зависит от качества почвы – чем она кислее, тем лучше.

Аккумулятор из цинка и меди

Можно провести интересный эксперимент, поместив два ключа – медный и железный – в апельсин. В результате появляется напряжение до 1 В. Решающим фактором является площадь электродов, соприкасающихся с кислотой, и уровень кислотности самого апельсина.

Этого количества энергии хватает на зарядку простого телефона. Чтобы увеличить мощность, необходимо параллельно подключить к этой схеме еще несколько таких же цепей. В результате получится зарядить смартфон или ноутбук, но под электростанцию из апельсинов и электродов придется выделить огромное помещение.

Этот метод получения энергии хороший, но не надежный и не долговечный: как только начнется окисление цинковых и медных электродов, начнет падать напряжение, а затем прекратится поступление энергии. Исправить положение может счистка окиси и добавление кислоты.

Потенциал между крышей и землей

В земле устанавливается металлический штырь, от него к крыше протягивается провод, получившейся электрической энергией можно спокойно пользоваться.

Правда, только до первой грозы, ведь по сути – это настоящий проводник.

В лучшем случае пострадают проводка и электроприборы, в худшем возникнет угроза жизни обитателей дома.

Виды добычи

Альтернативное электричество может добываться из воздуха двумя способами:

  1. Ветрогенераторами;
  2. За счет полей, пронизывающих атмосферу.

Как известно, электрический потенциал имеет свойство накапливаться в течение определенного времени. Сейчас атмосфера изнизана различными волнами, производящимися электрическими установками, приборами, естественным полем Земли. Это позволяет говорить о том, что электричество из атмосферного воздуха можно добыть своими руками, даже не имея никаких специальных приспособлений и схем, но про особенности токопроизводства по этому варианты мы расскажем ниже.

Фото – грозовая батарея

Ветрогенераторы – это давно известные источники альтернативной энергии. Они работаю за счет преобразования силы ветра в ток. Ветряной генератор – это устройство, способное работать продолжительное время и накапливать энергию ветра. Данный вариант широко используется в различных странах: Нидерландах, России, США. Но, одной ветряной установкой можно обеспечить ограниченное количество электрических приборов, поэтому для питания городов или заводов устанавливаются целые поля ветроустановок. В использовании этого способа есть как достоинства, так и недостатки. В частности, ветер – это непостоянная величина, поэтому нельзя предугадать уровень напряжения и накопления электричества. При этом, это возобновляемый источник, работа которого совершенно не вредит окружающей среде.

Фото – ветряки

Видео: создание электричества из воздуха

Простые схемы

Желая добыть атмосферное электричество своими руками, следует рассмотреть различные схемы и чертежи. Некоторые из них настолько простые, что даже начинающий изобретатель без особых трудностей сможет воплотить их в жизнь и создать примитивную установку

Важно отметить, что современные сети и линии электропередач вызывают дополнительную ионизацию воздушного пространства, что повышает количество электрического потенциала, содержащегося в атмосфере. Остается научиться добывать его и накапливать

Наиболее простая схема подразумевает использование земли в качестве основания и металлической пластины в виде антенны. Такое устройство может накапливать электроэнергию из воздуха, а затем распределять ее для решения бытовых задач.

При создании такой установки не приходится задействовать дополнительные накопительные приборы или преобразователи. Между металлической землей и антенной устанавливается электрический потенциал, который имеет свойство расти. Однако из-за непостоянной величины предугадать его силу очень проблематично.

Принцип работы такого устройства чем-то напоминает молнию — когда потенциал достигает пиковой отметки, происходит разряд. Из-за этого можно добыть из земли и атмосферы внушительный объем полезных ресурсов.

Среди плюсов вышеописанной схемы следует выделить:

  1. Простоту реализации в домашних условиях. Такой опыт можно с легкостью выполнить в домашней мастерской, используя подручные материалы и инструменты.
  2. Дешевизну. При создании устройства не придется покупать дорогие приспособления или узлы. Достаточно найти обычную металлическую пластину с токопроводящими свойствами.

Однако кроме плюсов есть и существенные недостатки. Один из них заключается в высокой опасности, связанной с невозможностью рассчитать примерное количество ампер и силу импульса. Также в рабочем состоянии система создает открытый контур заземления, способный притягивать молнию. Именно по этой причине проект не приобрел массового распространения.

Атмосферное электричество своими руками

По схеме, расположенной ниже, можно провести опыт посерьезней, и повторить эксперимент самого Теслы, собрав миниатюрную катушку.

Саму катушку можно намотать корпус от маркера (диаметр маркера около 25 мм), количество витков должно быть в диапазоне от 700 до 1000, провод с сечением 0,14 мм. Вторичная обмотка должна состоять из 5 витков провода диаметром 1,5 мм. Для первичной обмотки потребуется около 50 м провода. Активный компонент в этом устройстве – это транзистор 2n2222, также имеется резистор и, в общем-то,  это все компоненты, которые входят в эту катушку.

Несмотря на то, что катушка получится маленькой, она все равно сможет выдавать небольшую искру, если вы дотронетесь до нее пальцем, зажечь спичку или заставить лампочку гореть. Наматывать проволоку можно на любой корпус, главное, чтобы в нем не было металлических частей. Не повторяйте ошибку, которую совершают многие. Если хотите сделать ее автономно не засовывайте батарею внутрь корпуса, если внутри находится транзистор, катушка работает нормально и почти не греется, но если бы там была батарея, то магнитное поле, которое создает сам трансформатор Теслы, будет влиять на батарею, и вы выведете из строя транзистор. Чем аккуратнее получится у вас наматывать витки, тем лучше будет результат, а для того, чтобы катушка сохранилась у вас подольше, можно покрыть ее бесцветным лаком для ногтей.

Более серьезные эксперименты требуют больших денежных, временных и силовых затрат, но даже на схеме выглядят впечатляюще.

Наверняка у вас на кухне есть вентиляционный канал, который иногда работает даже в выключенном состоянии, от сквозняка. Его можно использовать для того, чтобы бесплатно осветить комнату. Сделать это можно из подручных материалов, все подробно рассказано в видео:

Схема простой электростанции:

Читайте также:

  • Какой электрический ток называют переменным: где используют
  • Напряженность электрического поля

Электричество из земли

Земля является своего рода сферическим конденсатором, который заряжен до 300 000 В. Внутри поверхность имеет отрицательный заряд, а снаружи, в ионосфере — положительный. Атмосфера выступает в роли изолятора. Через нее протекают огромные токи, но разность потенциалов остается прежней.

Из этого следует, что существует природный генератор, восполняющий утерянные заряды. Им выступает магнитное поле, благодаря подключению к которому и удается получать электричество из земли.

Процесс состоит в создании надежного заземления с одной стороны, и подсоединении к генераторному полюсу, с другой. Если первую задачу реализовать просто, то со второй придется изрядно повозиться.

Добыча из воздуха

Атмосферное электричество вполне может быть использовано. Многих привлекает возможность поставить себе на службу природную стихию во время грозы.

В атмосфере также присутствуют волны от поля планеты. Оказывается, электричество можно добыть из воздуха своими силами, не применяя сверхсложные устройства.

Некоторые способы следующие:

  • грозовые батареи используют свойство электрического потенциала накапливаться;
  • ветрогенератор преобразовывает в электричество силу ветра, работая долгое время;
  • ионизатор (люстра Чижевского) — популярный бытовой прибор;
  • генератор TPU (тороидального) электричества Стивена Марка;
  • генератор Капанадзе — бестопливный энергетический источник.

Рассмотрим подробно некоторые из устройств.

Ветрогенераторы

Популярный и всеобще известный источник энергии, получаемой с помощью ветра — ветрогенератор. Подобные устройства давно применяются во многих странах.

Установка в единственном числе ограниченно обеспечивает нужды электропитания. Поэтому приходится добавлять генераторы, если нужно обеспечить энергией крупное предприятие. В Европе существуют целые поля с ветряными установками, абсолютно не наносящими вреда природе.

Стоит отметить: недостатком может считаться невозможность рассчитать заранее величины напряжения и тока. Следовательно, нельзя сказать, сколько накопится электричества, так как действие ветра не всегда предсказуемо.

Грозовые батареи

Устройство, накапливающее потенциал с использованием атмосферных разрядов, называется грозовой батареей.

Схема прибора включает лишь антенну из металла и заземление, не имея сложных преобразовывающих и накапливающих компонентов.

Между частями прибора появляется потенциал, который затем накапливается. Воздействие природной стихии не подлежит точному предварительному расчету и данная величина также непредсказуема.

Важно знать: это свойство довольно опасно при реализации схемы своими руками, так как создавшийся контур притягивает молнии с напряжением до 2000 Вольт.

Тороидальный генератор С. Марка

Устройство, изобретенное С. Марком, способно вырабатывать электричество через некоторое время после его включения.

Генератор TPU (тороидальный) может питать бытовые приборы.

Конструкция состоит из трех катушек: внутренней, внешней и управляющей. Он действует из-за появляющихся резонансных частот и магнитного вихря, способствующих образованию тока. Правильно составив схему, подобный прибор можно сделать самому.

Генератор Капанадзе

Изобретатель Капанадзе (Грузия) воспроизвел генератор свободной энергии, в основе разработки которого лежал загадочный трансформатор Н. Тесла, дающий гораздо большую выходную мощность, чем в токе контура.

Генератор Капанадзе — бестопливное устройство, являющееся примером новых технологий.

Запуск осуществляется от аккумулятора, но дальнейшая работа продолжается автономно. В корпусе осуществляется концентрация энергии, добываемая из пространства, динамики эфира. Технология запатентована и не разглашается. Это практически новая теория электричества и распространения волн, когда энергия передается от одной частицы среды к другой.

Гальванический элемент

Следующий способ – простая химия. Это самый реальный и понятный способ получения электричества из земли в домашних условиях. Для этого нужны медные и цинковые электроды. В их роли могут выступать пластины, штыри, гвозди. Если медь распространена – с цинком могут возникнуть проблемы, поэтому легче найти оцинкованное железо.

Нужно забить ваши электроды в землю на одинаковом расстоянии друг от друга. Допустим 1 метр в глубину и 0,5 метра между электродами. В таком случае медь будет катодом, а цинк – анодом. Напряжение такого элемента может составлять порядка 1-1,1 Вольта. Это значит, чтобы получить из земли электричество напряжением в 12 вольт нужно забить 12 таких электродов и соединить их последовательно.

Решающим фактором в такой батарее является площадь электродов, от этого зависит и сила тока, ровно, как и от того, что находится между ними. Для того, чтобы батарея выдавала ток – земля должна быть влажной, для этого её можно полить, иногда цинковый электрод заливают раствором соли или щёлочи. Для повышения токовой отдачи можно забить больше электродов и соединить их параллельно. Таким образом устроены все современные батареи и аккумуляторы.

На схеме ниже вы видите еще одну интересную реализацию такой батареи из медных труб и оцинкованных стержней.

Однако с течением времени электроды разрушаться и батарея постепенно прекратит свою работу.

Возможно ли это

Прежде чем рассмотреть технологические схемы и ответить на вопрос «как взять электроэнергию из почвы?», давайте разберемся насколько это реально.

Считается, что в земле очень много энергии и, если сделать установку – вы вечно будете бесплатно ей пользоваться. Это не так, ведь чтобы получить энергию нужен определенный участок земли и металлические штыри, которые вы в неё установите. Но штыри будут окисляться и рано или поздно приём энергии закончится. Кроме того, её количество зависит от состава и качества самой почвы.

Чтобы добиться хорошей мощности нужен очень большой участок земли, поэтому в большинстве случаев энергии, полученной из земли, достаточно для включения пары светодиодов или небольшой лампочки.

Из этого следует, что энергию из земли получить можно, но использовать её как альтернативу электросетям вряд ли получится.

Как получить электричество в природных условиях

Пользу, а иногда и необходимость электричества недооценить сложно. Особенно в чрезвычайных условиях. Вам может понадобиться подзарядить рацию, фонарик или мобильный телефон. В данной статье мы расскажем о способах альтернативного получения электроэнергии из подручных материалов.

Содержание статьи

Деревья

Для практически любого простейшего способа получения электричества  без подключения к уже имеющейся электрической сети, обязательно понадобятся гальванические элементы, а именно два металла, которые в паре образуют разнополярные анод и катод соответственно. Теперь остается воткнуть в ближайшее дерево один из них, например алюминиевый стержень или железный гвоздь так, чтобы он полностью вошел через кору в сам ствол дерева, а другой элемент, например медную трубку, воткнуть в почву рядом, чтобы она вошла в землю на 15-20 см. Возможно даже между медной трубкой и алюминиевым стержнем возникнет напряжение в приблизительно 1 Вольт. Чем больше стержней вы вставите в дерево, тем лучше будет качество электроэнергии, добываемой таким способом. После окончания добычи электричества обязательно наведите порядок, замажьте поврежденные места на дереве смолой.

Фрукты
Апельсины, лимоны и другие цитрусовые, – все это идеальный электролит для выработки электричества в экстремальных условиях, особенно если экстремальная ситуация застала вас недалеко от экватора. Помимо уже известных алюминия и меди, можно использовать более эффективные золото и серебро если на вас или вашей спутнице остались украшения, доведя напряжение вашего электричества аж до 2 Вольт. Если вы занимаетесь получением электроэнергии с целью освещения, то в качестве лампочки может служить стеклянная колба с кусочком обугленного бамбукового волокна в качестве нити накаливания. Эту кустарную нить накаливания использовал для первой лампочки в мире сам Эдиссон.
Вода

Если у вас есть медная проволока и фольга, получение электричества в этом случае, займёт минимум усилий. Наполняем несколько стаканов соленой водой и соединяем их медной проволокой, от стакана к стакану. На один конец каждого провода, соединяющего стаканы, должна быть намотана алюминиевая фольга. Соответственно чем больше проволоки и стаканов. тем выше ваши шансы! Такой тип устройства был изобретен еще в 18-м веке, он называется “Вольтов столб”. Но в этом случае используются медно-цинковые элементы. Схема их изготовления показана ниже:

Картофель
Из клубней обычной картошки, тоже  можно получить электричество , все что вам понадобится, это соль, зубная паста, провода и картофелина. Разрежьте её пополам ножом, через одну половинку проведите провода, в то время как в другой сделайте по центру углубление в форме ложки, после чего наполните её зубной пастой, смешанной с солью. Соедините половинки картошки, причем провода должны контачить с зубной пастой, а их самих лучше зачистить. Все! Теперь вы можете при помощи вашего генератора электричества, зажигать костры от электрической искры.
Изготовление аккумулятора

Свинец и серная кислота уже не один десяток лет зарекомендовали себя как универсальный генератор электричества с превосходным качеством электроэнергии, использующийся повсеместно, например в аккумуляторах различных транспортных средств . Для этого вам понадобятся оба компонента, соединить которые нужно в керамической посуде (найти в экстремальных условиях глину и обжечь её не должно составить для вас труда, это относится и к стаканам в случае получения электричества из соленой воды). Если вопрос остался за серной кислотой, то получить её из серы, обжигая её при избытке кислорода и воды, не трудно. Если нет ни того ни другого, электричество  принесет вам минерал “галенит” , который уже при температуре 327 градусов в смеси с углем расплавляется на серу и свинец.

Как получить электричество из раскалённого металла?

Можно ли запасать энергию, разогрев вещество до очень высокой температуры – порядка 2000°C? Каковы были бы преимущества такой технологии? И какие проблемы стоят на пути её разработки? Ответы на эти жгучие вопросы пытаются найти учёные из этой металлургической лаборатории в Норвегии.

Необходима тщательная подготовка при работе с жидким сплавом, нагретым до 1700°C. Учёные, занятые в этом европейском исследовательском проекте, стремятся выяснить, можно ли получать электричество из тепловой энергии, когда металл раскалён до столь высоких температур. В данном опыте используется железо с добавками кремния и бора.

Учёный-материаловед Мерет Тангстад из Норвежского научно-технического университета поясняет:

– Мы начали с тех материалов, у которых наибольшая разница в энергии в жидком и твёрдом состоянии. Это, пожалуй, главный эффект, который мы изучаем. Он важен, потому что позволит нам запасать очень большую энергию в очень маленьких объёмах.

При таких температурах процесс теплопередачи смещается от проводимости или конвекции к излучению. Но процедура должна быть предельно эффективной, надёжной, стабильной и безопасной, чтобы исключить несчастные случаи, технические сбои и потери энергии. Поэтому необходимо вести мониторинг в реальном времени.

– При высоких температурах всё реагирует со всем, – говорит Наталия Собчак из Польского исследовательского литейного института. – И каждая из этих реакций может вызвать огромные изменения свойств контейнера, он даже может треснуть. В идеале мы ищем условия, которые гарантировали бы контролируемые химические реакции в процессе плавления.

Здесь, в Мадриде, ведутся дополнительные исследования по разработке первых готовых к использованию систем. Учёные рассчитывают, что их работа вскоре позволит создать недорогую тепловую электростанцию, где энергия, полученная из устойчивых источников, будет храниться в системах скрытого накопления тепловой энергии, которые смогут снабжать электроэнергией потребителей.

– Мы можем запасать от одного до двух киловатт-часов на литр, – поясняет Алехандро Датас из института Солнечной энергии. – Это примерно в 10 раз больше, чем позволяет обычная электрохимическая батарея. Вся энергия, которая производится в процессе плавления – это нерастраченная энергия. Она сохраняется в тепловой форме.

Для достижения такого результата, исследователи хотят добиться наибольшей степени преобразования накопленного тепла в электричество. А для этого требуется обратить особое внимание на электроны.

– Когда некий материал достигает определённой высокой температуры, он выделяет электроны, – говорит Даниэль Мариа Трукчи, электроинженер из CNR-ISM. – Наша задача – обеспечить эффективное высвобождение этих электронов при не слишком высокой температуре. Тогда мы сможем добиться максимального преобразования тепловой энергии в электричество. Электроны становятся транспортёрами электричества.

Уже готов первый прототип, который должен продемонстрировать осуществимость всей концепции. В нём используется мало материалов, что упрощает сборку и сокращает затраты на дальнейшее обслуживание. Если испытания пройдут успешно, учёные намерены представить свою разработку на рынке.

– Преимущество небольших систем, которые мы разрабатываем, состоит в том, что за счёт объёма продаж мы сможем увеличить производство и значительно повысить нашу производительность, – поясняет Алехандро Датас. – В краткосрочной перспективе, лет примерно через пять, мы рассчитываем выйти с этой новой технологией на рынок.

Дешевый, безопасный, экологичный, но редкий способ получения электричества в промышленных масштабах – Наука – Коммерсантъ

После Чернобыля мир не испугался и не прекратил строительство атомных электростанций. Мир решил, наверное, что это сработал специфически советский человеческий фактор. После катастрофы на АЭС «Фукусима» в Японии человечество осознало, что атомная энергия опасна даже в руках осторожных, ответственных, и технически продвинутых цивилизаций. Германия и другие страны ЕС уже думают о полном прекращении использования АЭС. Поэтому поиск новых, менее опасных источников энергии сейчас актуален как никогда. Одним из таких источников может стать тепло земли.

Сидим на грелке

Под наружной оболочкой Земли — земной корой — находится разогретая мантия, где, возможно, зарождаются вулканы (по другим теориям, вулканы зарождаются во внешней, расплавленной оболочке ядра). Горячая магма поднимается вверх по тектоническим трещинам и вступает в контакт с океанической водой, которая инфильтрируется из придонных областей океана в околомагматические зоны. Там вода нагревается, вбирает часть растворенных в магме газов — таких как сероводород и углекислый газ — и других химических веществ, захватывая и элементы из пород, сквозь которые она фильтруется. Увеличение содержания СО2 вызывает образование сильного адсорбента — кальциевого силикагеля, что ведет к изменению проницаемости водовмещающих комплексов и, в конечном счете, к тепловой и геохимической самоизоляции геотермальной системы. Считается, что наличие силикагеля обусловливает высокие концентрации разных веществ в термальных водах.

На континентах земная кора обычно очень мощная — до 70, иногда до 100 километров. Более древние магматические породы обычно перекрыты толстым осадочным чехлом, и магме его просто не прорвать. Там же, где земная кора тоньше — например, в зонах перехода от континентальной коры к океанической — магме, раскаленным газам и перегретому водяному пару легче выбраться на поверхность. Именно в таких районах случаются самые интересные геологические события наших дней — извержения вулканов, землетрясения, именно там фыркают и плюются гейзеры, дымят фумаролы, и именно там сравнительно легок доступ к подземным источникам тепла. Вообще-то наиболее активные проявления вулканизма отмечаются в областях, где кора тоньше всего — на дне океанов, в зонах срединно-океанических хребтов, но ни видеть, ни толком изучать, ни тем более использовать этот вулканизм мы пока не научились.

Основная часть территории России расположена на двух древних, 2,5 — 3,5 млрд лет, платформах (Восточно-Европейской и Сибирской). Между ними лежит сравнительно молодая (всего 250-400 млн лет), но тоже надежная Западно-Сибирская плита. Поэтому в России районы с тонкой корой находятся только на дальних окраинах — на Камчатке и Курильских островах, которые входят в зону активных геологических процессов. «В областях современного вулканизма формируются и геотермальные месторождения, — говорит доктор геолого-минералогических наук, заведующий лабораторией тепломассопереноса ИВиС ДВО РАН Алексей Кирюхин. — Условия их формирования могут быть разными. Довольно часто работает правило: чем больше и активнее вулкан, тем меньше шансов найти в его окрестностях геотермальное месторождение (пример — вулкан Ключевский), чем крупнее геотермальное месторождение, тем меньше шансов увидеть в его пределах большой вулкан (пример — Долина гейзеров в Калифорнии)».

Окраины Тихого океана образуют Тихоокеанское огненное кольцо. Огненное оно потому, что здесь сосредоточено большинство действующих вулканов. Здесь же происходит субдукция

Области современного активного вулканизма в основном сосредоточены в так называемом Тихоокеанском огненном кольце — это практически все окраины Тихого Океана, включая Камчатку, Курилы, Японию, Индонезию, Филиппины, Анды и Кордильеры, цепочку Алеутских островов и архипелаг Огненная Земля. Все эти территории относятся к зонам самой молодой, альпийской складчатости, и на окраинах материков подвержены процессу субдукции — поддвиганию океанической коры под континентальную. В процессе субдукции окраинные участки континентальной коры вздымаются, формируя горные хребты, а «ныряющая» фронтальная зона тонкой океанической коры плавится, давая «сырье» для современных вулканов.

К зонам альпийской складчатости относятся также Альпы и Пиренеи, Крым, Кавказ, Памир, Гималаи. Многие вулканы здесь уже прошли активную стадию, и в породах, перекрывающих остывающую магму, происходят постмагматические процессы. В таких районах затухающего или «дремлющего» вулканизма — который проявляется не столько извержениями, сколько работой гейзеров, фумарол, грязевых вулканов — как раз и существует возможность получения электричества в промышленных масштабах. В других, менее активных, областях, впрочем, тоже можно использовать земное тепло. Даже в стабильных платформенных областях встречаются источники термальных вод, да и геотермический градиент может быть достаточно высоким.

Креативная, дешевая и чистая технология

Использовать геотермальное тепло можно по-разному. Во-первых, как древние римляне, можно непосредственно применять термальные воды для обогрева и ванн. Бесчисленные горячие источники в Европе ли, в Америке, на Филиппинах, — это проявления все тех же поствулканических процессов. В России тепло подземных вод используется для обогрева зданий и теплиц в Калининградской области, в Западной Сибири, в Краснодарском крае. Такое «прямое» использование тепла позволяет сэкономить и снизить нагрузку на окружающую среду.

Новозеландская геотермальная станция Ваиракеи открыта в 1958 году, первой после войны и второй в мире (самая первая построена в итальянском городе Лардерелло в 1904 году).

Фото: National Geographic/Getty Images/Fotobank

Можно использовать тепловые насосы, позволяющие обогревать или охлаждать жилые дома за счет разницы температур между воздухом и грунтом. А можно — в дополнение к простому обогреву — построить геотермальную электростанцию и получать очень дешевую электроэнергию. В зависимости от геологических условий, — то есть от температуры пород, наличия и состава воды в них — могут использоваться разные типы гидротермоэлектростанций.

В некоторых случаях геотермальная энергия позволяет убить сразу нескольких зайцев. Например, «Шеврон» использует для ее получения горячие воды, выкачиваемые из недр вместе с нефтью. На поверхности раскаленная смесь воды и пара отделяется от нефти, сепарируется, пар вращает турбины и дает электроэнергию, вода же закачивается обратно в породу. Это позволяет одновременно решить проблему токсичных сбросов и поддержать давление в нефтяном пласте, тем самым улучшая его нефтеотдачу и увеличивая срок использования скважины.

Геотермальная энергетика, новая отрасль на стыке нескольких наук и промышленности, привлекает внимание ученых и практиков разных специальностей. Одни задумываются, как добыть редкие и благородные металлы, растворенные в горячих подземных водах. Может быть, именно в фазе охлаждения этих вод когда-нибудь и удастся извлечь золото и платину.

Другие изобретают способы применения низкотемпературных вод. Главный инженер ОАО «Геотерм» Дмитрий Колесников считает, что вскоре будет разработана технология вторичного использования сепарата, то есть частично охлажденной воды: «Ее можно будет использовать на любых промышленных предприятиях, где есть горячие стоки. Больших мощностей ожидать не стоит, но, во-первых, горячая вода идет на второй цикл, то есть снижается непроизводственное использование энергии, а во-вторых, можно будет решать проблему энергоснабжения самого предприятия».

Россия отличается стабильностью

Геотермальная энергетика в России начала развиваться в 1960 годах. Тогда были построены первые — по сути, экспериментальные — электростанции. Паужетская ГеоЭС (11 МВт), на одноименном геотермальном месторождении была построена в 1967 году. «Эта электростанция служила как бы опытной площадкой, на ней опробовались технологии, испытывалась паро-водяная смесь», — рассказал Колесников. Неподалеку от нее расположены Мутновская ГеоЭС (50 МВт) и Верхне-Мутновская (12 МВт) ГеоЭС. На Курилах, на островах Кунашир и Итуруп, тоже работают две относительно небольшие ГеоЭС — 6 и 2,6 МВт. Собственно, этим недлинным списком и ограничивается действующая российская геотермальная энергетика.

Первая в России геотермальная электростанция — Паужетская — введена в эксплуатацию в 1966 году.

Фото: РИА НОВОСТИ

Не в силу политико-экономических или исторических причин, не потому, что за рубежом лучше головы или технологии, но исключительно из-за высокого уровня стабильности российского геологического устройства западные, восточные, юго-восточные и даже некоторые африканские страны оставили нас далеко позади в области геотермальной энергетики. В Исландии на геотермальных электростанциях получают 30% электроэнергии, на Филиппинах — более 25%, в Сальвадоре и Коста-Рике — около 15%, в Новой Зеландии и Никарагуа — 10%. В США доля «геотермального» электричества невелика, всего 0,3%, но по объемам выработки США опережают все остальные страны мира.

В США к широко известным геотермальным электростанциям в Калифорнии и Неваде в 2006 году добавилась маленькая, но необычная электростанция в самой что ни на есть глубокой американской глубинке — на Аляске, на курорте China Hot Springs. Хотя термальные источники там горячи для человека (74С), эта температура все же слишком низка для производства энергии по обычной технологии. Тем не менее, решение — применение бинарного цикла — было найдено: в теплообменнике природная вода отдает свое тепло специальному реагенту, который закипает даже при столь низкой температуре. Слегка охлажденная (примерно до 70 градусов) вода честно возвращается в исходный горизонт. За пять лет эксплуатации температура поступающей воды упала примерно на градус. Три генератора могут давать 650 кВт в час, что достаточно, например, для обслуживания целого поселка. Каждый генератор стоит около $800 000, и окупаемости за полгода ожидать не стоит. Но лет за 10 эти инвестиции окупятся даже при цене электричества в 6 центов за киловатт. Генератор, работающий на мазуте, «стоил» 30 центов за киловатт, так что разница очевидна.

А бинарная технология, использованная на Аляске, вообще-то изобретена в России еще в 1967 году, и использована на Паратунском геотермальном месторождении на Камчатке.

Экономика горячей воды

Как считает Дмитрий Колесников, преимущества геотермальной энергетики — в простоте процесса и дешевизне получаемой энергии. «Собственно, бурится скважина, из которой идет паро-водяная смесь, которая на станции сепарируется, пар вращает турбину, и дальше все работает как в обычной котельной», — объяснил он принцип работы.

Возле исландского города Гриндавика геотермальная электростанция совмещена со spa-курортом

Фото: AFP/EASTNEWS

Геотермальная энергия действительно обходится очень дешево, прежде всего за счет экономии на углеводородном сырье. Самое дорогое — это скважины и линии электропередач. Правда, там, где можно построить ГЭС, геотермальные электростанции будут не столь экономически привлекательными. Но в России мощнейшие ГЭС строились тогда, когда понятия частной собственности на землю не было. Сегодня, чтобы затопить гигантские территории, нужно будет их у кого-то выкупить, что сильно поднимет цену киловатт-часа. Да и землю жалко (поэтому современные ГЭС строятся в основном в горах, где площадь затопления минимальна). А вот при сравнении цены «геотермального» киловатт-часа с ценой электричества, вырабатываемого ТЭС, разница уже сегодня не в пользу углеводородной энергетики.

Экология соленой воды

Люди, которые занимаются геотермальной энергетикой, как-то с восхищением к ней относятся. Они понимают, что это сравнительно дешевый, сравнительно безопасный способ получения электроэнергии из возобновляемых источников. Тем не менее, как и во всех отраслях промышленности, здесь есть свои проблемы.

Да, углеводородного топлива на ГеоЭС нет, но проблема отходов существует. «Отходы» — это остывшая подземная вода, часто сильно соленая. Ее нельзя сбросить в ближайшую речку, она слишком токсична. Кроме того, при изъятии материала из недр обычно повышается сейсмическая активность, и из-за сейсмодислокаций приток пароводяной смеси на поверхность может вообще прекратиться. «Воды у нас (на Паужетской электростанции) — 1000 тонн в час, в идеале должен быть замкнутый цикл, на поверхность мы эту воду сливать не можем. Воду — сепарат — мы закачиваем обратно в пласт. Правда, не в то место, откуда мы ее берем, иначе мы быстро охладим «дающий» участок. Поэтому закачиваем не в него, а в соседние зоны», — объясняет Колесников.

В связи с высокой агрессивностью горячих подземных вод возникает проблема коррозии, износа оборудования. Но с коррозией, по мнению Колесникова, бороться можно — надо просто правильно подбирать материалы.

Геотермальную энергию добывать не всегда легко. Часто геотермальные месторождения находятся в труднодоступных местах или в зонах повышенной сейсмической активности. В сейсмически активных зонах постройка ГеоЭС не только сопряжена с угрозой для работников, но может оказаться экономически бессмысленной: при структурных подвижках геотермальное месторождение может просто исчезнуть или поменять режим так, что работа станции станет невыгодной.

Геотермы вообще недостаточно изучены. Поверхностные, более легкодоступные геотермы часто имеют довольно короткий срок жизни. Исследования же глубоко залегающих, более крупных геотермальных месторождений требуют больших средств. Пока российская экономика живет за счет высоких цен на углеводородное сырье, научные и практические работы по геотермам будут оставаться недофинансированными. Это приведет к тому, что Россия, некогда первой применившая бинарную технологию, вновь окажется в хвосте, как и со сланцевым газом.

«Хотим, не хотим, а развивать будем»

Вряд ли геотермальная энергия придет в каждый дом. В России, во всяком случае, не завтра. Низкотемпературные технологии получения электричества пока еще дороги, а самое главное — в платформенных областях, где проживает большая часть населения России, горячие напорные подземные воды редки. Поэтому в ближайшее время можно ожидать только развития применения тепловых насосов, которые позволяют напрямую использовать тепло земли.

Возможности для постройки ГеоТЭС, кроме Камчатки и Курил, существуют на Урале, в Краснодарском крае, на Ставрополье. Анализируются возможности строительства ГеоЭС в южных областях Западной Сибири. «А вообще, должна быть энергетическая стратегия по регионам, комплексный подход. Если есть возможность построить геотермальную электростанцию — надо строить: это и дешевая энергия, и отсутствие потребности в углеводородном сырье», — считает Колесников.

Алексей Кирюхин уверен, что геотермальную энергию можно получать всюду — вопрос в количестве и качестве. Но, конечно, для гидротермальных электростанций главным ограничивающим фактором еще долго будет служить строгая привязанность к источникам тепла.

Даже если экономия на геотермальной электроэнергии окажется меньше ожидаемой, выигрыш для природы очевиден. Валентина Свалова из Института геоэкологии РАН в работе «Геотермальные ресурсы России и их комплексное использование» показала, что если за счет геотермальной энергетики удастся достичь выработки электричества в 7800 ГВт.ч, то это позволит сэкономить 15,4 млн баррелей нефти, что исключит выброс приблизительно 7 млн тонн СО2.

Возобновляемость и дешевизна делают геотермальную энергию крайне привлекательной. «Хотя геотермальные электростанции имеют более низкий потенциал, дают меньшую мощность, они не требуют использования углеводородного сырья, — повторяет Колесников. — Ситуация с нефтью понятна, цены будут только расти, поэтому, хотим мы или не хотим, а геотермальную энергетику развивать будем».

Суммарная мощность геотермальных электростанций



Страна
Установленная
мощность,
(МВт)
США3,086
Филиппины1,904
Индонезия1,197
Мексика958
Италия843
Новая Зеландия628
Исландия575
Япония536
Сальвадор204
Кения167
Коста-Рика166
Никарагуа88
Россия82
Турция82
Папуа — Новая Гвинея56
Гватемала52
Португалия29
Китай24
Франция16
Эфиопия7,3
Германия6,6
Австрия1,4
Австралия1,1
Тайланд0,3

Татьяна Крупина


Швейцарские ученые добыли электричество из дерева

Ученые из Швейцарии представили метод генерации электричества из дерева. Для этого они изменили химический состав материала.

Исследователи из Швейцарской высшей технической школы создали химически модифицированную древесину и сделали ее более сжимаемой, превратив в мини-генератор. При сжатии материал генерирует электрическое напряжение. Такая древесина может служить в качестве биосенсора или строительного материала, который генерирует энергию.

Инго Бургерт и его команда показали, что древесина — это гораздо больше, чем просто строительный материал. В своих экспериментах они улучшили свойства древесины, чтобы использовать ее в новых областях применения. Например, они уже разработали высокопрочную, водоотталкивающую и намагничивающуюся древесину.

Теперь, совместно с исследовательской группой Empa, команда использовала один химический и биологический процесс для получения электрического напряжения из деревянной губки. При этом они усиливают пьезоэлектрический эффект древесины.

Исследователи объяснили, что при эластичной деформации пьезоэлектрического материала он генерирует электрическое напряжение. Технология измерения регистрирует это явление с помощью датчиков, которые при механическом напряжении генерируют сигнал заряда. Однако многие материалы, часто используемые для этих датчиков, непригодны для биомедицинских применений. Например, цирконат-титанат свинца (PZT) не может быть использован на коже из-за токсичного свинца.

Дерево также обладает естественным пьезоэлектрическим эффектом, но генерирует только очень низкое электрическое напряжение. Однако ученые смогли увеличить его напряжение, изменив химический состав древесины.


Читать далее

Уран получил статус самой странной планеты в Солнечной системе. Почему?

Люди могут выдерживать очень низкие температуры даже без источников тепла

Физики создали аналог черной дыры и подтвердили теорию Хокинга. К чему это приведет?

Бесплатное электричество своими руками [инструкции+схемы]

Счет за электричество – неминуемая статья расходов для любого современного человека. Централизованное электроснабжение постоянно дорожает, но потребление электричества с каждым годом все равно растет. Особенно остро эта проблема стоит для майнеров, ведь, как известно, добыча криптовалюты требует значительного количества электроэнергиии, в связи с чем счета на ее оплату могут превышать прибыль от майнинга. При таких условиях стоит обратить внимание на то, что практически все природные ресурсы могут быть использованы для преобразования в электричество. Даже в воздухе присутствует статическое электричество, осталось только найти методы им воспользоваться.

Где взять бесплатное электричество?

Добыть электричество можно практически «из всего». Единственное условие: необходим проводник и разница потенциалов. Ученые и практики постоянно ищут новые альтернативные источники энергии, которые будут бесплатными. Следует уточнить, что под бесплатными подразумевается отсутствие платы за централизованное энергоснабжение, но само оборудование и его установка все же стоит средств. Правда, такие вложения с лихвой окупаются впоследствии.

На данный момент бесплатная электроэнергия добывается из трех альтернативных источников:

Методика получения электричестваОсобенности выработки энергии
Солнечная энергияТребует установки солнечных батарей или коллектора из стеклянных трубок. В первом случае электричество будет вырабатываться благодаря постоянному движению электронов под воздействием солнечных лучей внутри батареи, во втором — электричество будет преобразовано из тепла от нагрева.
Ветряная энергияПри ветре лопасти ветряка начнут активно вращаться, вырабатывая электричество, которое может сразу поставляться в аккумулятор или сеть.
Геотермальная энергияМетод заключается в получении тепла из глубины грунта и его последующей переработки в электроэнергию. Для этого пробуривают скважину и устанавливают зонд с теплоносителем, который будет забирать часть постоянного тепла, существующего в глубине почвы.

Такие методы используются как обычными потребителями, так и в широких масштабах. Например, огромные геотермальные станции установлены в Исландии и вырабатывают сотни МВт.

Как сделать бесплатное электричество дома?

Бесплатное электричество в квартире должно быть мощным и постоянным, поэтому для полного обеспечения потребления потребуется мощная установка. Первым делом следует определить наиболее подходящий метод. Так, для солнечных регионов рекомендуется установка солнечных батарей. Если солнечной энергии недостаточно, тогда следует использовать ветряные или геотермальные электростанции. Последний метод особенно подходит для регионов, расположенных в относительной близости к вулканическим зонам.

Определившись с методом получения энергии, следует также позаботиться о безопасности и сохранности электроприборов. Для этого домашняя электростанция должна быть подключена к сети через инвертор и стабилизатор напряжения для обеспечения подачи тока без резких скачков. Стоит также учитывать, что альтернативные источники достаточно капризны к погодным условиям. При отсутствии соответствующих климатических условий выработка электроэнергии остановится или будет недостаточной. Поэтому следует обзавестись также мощными аккумуляторами для накопления на случай отсутствия выработки.

Готовые установки альтернативных электростанций широко представлены на рынке. Правда, их стоимость достаточно высока, но, в среднем, все они окупаются за период от 2 до 5 лет. Сэкономить можно, приобретая не готовую установку, а ее комплектующие, а затем уже самостоятельно спроектировать и подключить электростанцию.

Как получить бесплатное электричество на даче?

Подключение к централизованной системе энергоснабжения – проблематичный процесс, и часто дачи остаются без света долгое время. Здесь может помочь установка дизельного генератора или альтернативные способы добычи.

На дачах зачастую нет такого огромного количества электроприборов, как в квартирах. Соответственно, потребление электроэнергии значительно меньше. Для начала следует определить преимущественный период времени, который будет проводиться в помещении. Так, для летних дачников подойдут солнечные коллекторы и батареи, для остальных – ветряные методы.

Питать отдельные электроприборы или освещать помещение можно, собирая электроэнергию от заземления. Схема для получения бесплатного электричества: ноль — нагрузка — земля. Напряжение внутри дома подается через фазовый и нулевой проводник. Включив в эту схему третий проводник нагрузки к нулю, в него будет направлено от 12Вт до 15Вт, которые не будут фиксироваться приборами учета. Для такой схемы обязательно нужно позаботиться о надежном заземлении. Ноль и земля не несут опасности удара током.

Бесплатное электричество из земли

Почва – благоприятная среда для извлечения электричества. В грунте присутствуют три среды:

  • влажность — капли воды;
  • твердость — минералы;
  • газообразность — воздух между минералами и водой.

Кроме того, в почве постоянно проходят электрические процессы, так как ее основной гумусовый комплекс представляет собой систему, на внешней оболочке которой формируется отрицательный заряд, а на внутренней – положительный, что влечет за собой постоянное притягивание положительно заряженных электронов к отрицательным.

Метод похож на тот, что используется в обычных батарейках. Для получения электричества из земли следует погрузить в грунт на глубину полуметра два электрода. Один медный, второй из оцинкованного железа. Расстояние между электродами должно быть примерно 25 см. Грунт между проводниками заливается солевым раствором, а к проводникам подключаются провода, на одном будет положительный заряд, на втором отрицательный.

В практических условиях выходная мощность такой установки составит приблизительно 3Вт. Мощность заряда также зависит от состава грунта. Конечно, такой мощности недостаточно для того, чтоб обеспечить энергоснабжение в частном доме, но установку можно усилить, изменяя размер электродов или последовательно соединив между собой необходимое количество. Проведя первый опыт, можно примерно просчитать, сколько понадобится таких установок, чтоб обеспечить 1 кВт, а далее рассчитать необходимое количество на основе среднего потребления в сутки.

Как добыть бесплатное электричество из воздуха?

Впервые о получении электричества из воздуха заговорил Никола Тесла. Опыты ученого доказали, что между основанием и поднятой металлической пластиной существует статическое электричество, которое можно накапливать. К тому же воздух в современном мире постоянно подвергается дополнительной ионизации за счет функционирования множества электросетей.

Почва может выступать основанием для механизма добычи электроэнергии из воздуха. Металлическую пластину размещают на проводнике. Она должна быть размещена выше других рядом стоящих объектов. Выходы от проводника подключают к аккумулятору, в котором будет накапливаться статическое электричество.

Бесплатное электричество от ЛЭП

Линии электропередач пропускают по своим проводам огромное количество электричества. Вокруг провода, в котором идет ток, создается электромагнитное поле. Таким образом, если поместить под ЛЭП кабель, то на его концах образуется электрический ток, точную мощность которого можно просчитать, зная, какой мощности ток передается по кабелю.

Еще одним способом является создание трансформатора вблизи линий электропередач. Трансформатор можно создать при помощи медной проволоки и стержня, используя метод первичной и вторичной обмотки. Выходная мощность тока в таком случае зависит от объема и мощности трансформатора.

Стоит учесть, что такая система получения бесплатного электричества является незаконной, хоть в ней и отсутствует фактическое незаконное подключение к сети. Дело в том, что такое вклинивание в систему электроснабжения наносит ущерб ее мощности.

Бесплатное электричество из сетевого фильтра

Многие искатели бесплатного электричества наверняка находили в Интернете версии о том, что удлинитель может стать источником нескончаемой свободной энергии, образовывая замкнутую цепь. Для этого следует взять сетевой фильтр с длиной провода не менее трех метров. Из кабеля сложить катушку, диаметром не более 30 см, подключить к розетке потребителя электроэнергии, изолировать все свободные отверстия, оставив только еще одну розетку для вилки самого удлинителя.

Далее сетевому фильтру необходимо дать изначальный заряд. Легче всего это сделать, подключив удлинитель к функционирующей сети, а затем за доли секунды замкнуть в себе. Бесплатное электричество из удлинителя подойдет для питания осветительных приборов, но мощность свободной энергии в такой сети слишком мала для чего-то большего. А сам метод достаточно спорный.

Бесплатное электричество из магнитов

Магнит излучает магнитное поле и, как следствие, его можно использовать для добычи бесплатного электричества. Для этого следует обмотать магнит медной проволокой, образуя маленький трансформатор, разместив который вблизи электромагнитного поля, можно получать бесплатную энергию. Мощность электроэнергии в таком случае зависит от размера магнита, количества обмоток и мощности электромагнитного поля.

Как использовать бесплатное электричество?

Решив заменить централизованное энергоснабжение на альтернативные источники, следует учитывать все необходимые меры безопасности. Во избежание резких перепадов напряжения электрический ток к приборам должен подаваться через стабилизаторы напряжения. Обязательно стоит обратить внимание на опасности каждого метода. Так, погружение электродов в почву подразумевает последующую заливку почвы соленым раствором, что сделает ее непригодной для дальнейшего роста растений, а системы накопления статического электричества из воздуха могут привлекать молнии.

Электричество не только полезно, но и опасно. Неправильная фазировка может привести к ударам тока, а короткое замыкание в сети — к пожарам. Обеспечение дома электричеством в домашних условиях нужно начинать с детального изучения методов и законов физики.

Следует учитывать, что большинство методов не дают стабильной мощности и зависят от многих факторов, в том числе и погодных условий, предугадать которые невозможно. Поэтому энергию рекомендуется накапливать в аккумуляторах, а на всякий случай еще и иметь запасной вид электрообеспечения.

Прогноз на будущее

Уже сейчас альтернативные источники энергии широко используются. Львиная доля потребления электричества приходится на домашние электроприборы и освещение. Заменив их питание с централизованного на альтернативное, можно существенно экономить. Особое внимание на альтернативные источники электроснабжения стоит обратить майнерам, так как майнинг на централизованном энергоснабжении способен забирать до 50% прибыли, в то время как добыча на бесплатном электропитании будет приносить чистый доход.

Все больше домов переходит на питание от солнечных батарей или ветряных электростанций. Такие методы дают намного меньше мощности, но являются экологически чистыми источниками энергии, которые не наносят вреда окружающей среде. Конструируются также и промышленные альтернативные электростанции.

В дальнейшем эта сфера будет только дополняться новыми методами и улучшенными аналогами.

Заключение

Добыть электроэнергию можно даже из воздуха, но для покрытия всех нужд потребления необходимо спроектировать целую систему альтернативной выработки энергии. Можно пойти легким путем и купить уже готовые солнечные батареи или ветряные станции, а можно приложить усилия и собрать собственную электростанцию. Сейчас бесплатное электричество – не до конца изведанная сфера и открывает массу возможностей для самостоятельных экспериментов.

Электроэнергия в США — Управление энергетической информации США (EIA)

Электроэнергия в США производится (генерируется) с использованием различных источников энергии и технологий

Соединенные Штаты используют множество различных источников энергии и технологий для производства электроэнергии. Источники и технологии менялись со временем, и некоторые из них используются чаще, чем другие.

Три основных категории энергии для производства электроэнергии — это ископаемое топливо (уголь, природный газ и нефть), ядерная энергия и возобновляемые источники энергии.Большая часть электроэнергии вырабатывается паровыми турбинами с использованием ископаемого топлива, ядерной энергии, биомассы, геотермальной и солнечной тепловой энергии. Другие основные технологии производства электроэнергии включают газовые турбины, гидротурбины, ветряные турбины и солнечные фотоэлектрические установки.

Нажмите для увеличения

Ископаемое топливо — крупнейший источник энергии для производства электроэнергии

Природный газ был крупнейшим источником U — около 40%.S. Производство электроэнергии в 2020 году. Природный газ используется в паровых турбинах и газовых турбинах для выработки электроэнергии.

Уголь

был третьим по величине источником энергии для производства электроэнергии в США в 2020 году — около 19%. Почти все угольные электростанции используют паровые турбины. Несколько угольных электростанций преобразуют уголь в газ для использования в газовой турбине для выработки электроэнергии.

Нефть была источником менее 1% выработки электроэнергии в США в 2020 году. Остаточное жидкое топливо и нефтяной кокс используются в паровых турбинах.Дистиллятное или дизельное топливо используется в дизельных генераторах. Остаточное жидкое топливо и дистилляты также можно сжигать в газовых турбинах.

Ядерная энергия обеспечивает пятую часть электроэнергии США

Ядерная энергия была источником около 20% выработки электроэнергии в США в 2020 году. Атомные электростанции используют паровые турбины для производства электроэнергии за счет ядерного деления.

Возобновляемые источники энергии обеспечивают растущую долю электроэнергии в США

Многие возобновляемые источники энергии используются для выработки электроэнергии и являются источником около 20% всего U.С. Производство электроэнергии в 2020 году.

Гидроэлектростанции произвели около 7,3% от общего объема производства электроэнергии в США и около 37% электроэнергии из возобновляемых источников энергии в 2020 году. 1 Гидроэлектростанции используют проточную воду для вращения турбины, подключенной к генератору.

Энергия ветра была источником около 8,4% от общего объема производства электроэнергии в США и около 43% электроэнергии из возобновляемых источников энергии в 2020 году. Ветровые турбины преобразуют энергию ветра в электричество.

Биомасса была источником около 1,4% от общего объема производства электроэнергии в США в 2020 году. Биомасса сжигается непосредственно на пароэлектрических электростанциях или может быть преобразована в газ, который можно сжигать в парогенераторах, газовых турбинах или внутреннем сгорании. двигатели-генераторы.

Солнечная энергия обеспечила около 2,3% всей электроэнергии США в 2020 году. Фотоэлектрическая (PV) и солнечно-тепловая энергия — два основных типа технологий производства солнечной электроэнергии. Преобразование PV производит электричество непосредственно из солнечного света в фотоэлектрических элементах.В большинстве гелиотермических систем для выработки электроэнергии используются паровые турбины.

Геотермальные электростанции произвели около 0,5% от общего объема производства электроэнергии в США в 2020 году. Геотермальные электростанции используют паровые турбины для выработки электроэнергии.

1 Включая обычные гидроэлектростанции.

Последнее обновление: 18 марта 2021 г.

Как производится электричество? | Как работает электричество?

Какие источники питания зеленые?

Энергия, вырабатываемая из возобновляемых источников, таких как гидро-, ветровая, солнечная и геотермальная, является зеленой.В отличие от ископаемого топлива эти источники энергии не истощают природные ресурсы. Они также являются более чистыми источниками энергии, которые не загрязняют окружающую среду выбросами углерода.

Хотя возобновляемые источники энергии лучше для здоровья нашей планеты, они обычно стоят больше, чем другие источники энергии, поэтому большая часть нашей электроэнергии не вырабатывается из зеленых источников.

Продукт JustGreen Power компании

Just Energy позволяет гарантировать, что до 100% потребляемой вами электроэнергии вырабатывается из возобновляемых источников.

Узнать больше
Ежегодное раскрытие экологической информации
Ежеквартальное раскрытие экологической информации

Хотя варианты зеленой энергии Just Energy доступны на большинстве рынков, которые мы обслуживаем, они пока доступны не на всех наших рынках. Посмотрите, на каких рынках мы в настоящее время предлагаем варианты зеленой энергии.

Хотите узнать больше об электричестве? Ознакомьтесь с нашей серией обучающих статей с часто задаваемыми вопросами об электричестве.

Раскрытие экологической информации

Заявление об охране окружающей среды штата Иллинойс
Заявление об охране окружающей среды штата Делавэр

Источники: «Электроэнергия — вторичный источник энергии.”Университет Лихай,

1. «Электроэнергия — вторичный источник энергии». Университет Лихай, http://www.ei.lehigh.edu/learners/energy/readings/electricity.pdf

2. «Наука об электричестве». Факторы, влияющие на цены на бензин — объяснение энергии, ваше руководство по пониманию энергетики — Управление энергетической информации, www.eia.gov/energyexplained/electricity/the-science-of-electricity.php

3. «Уголь и электричество». Всемирная угольная ассоциация, 17 апреля 2018 г., www.worldcoal.орг / уголь / использует-уголь / уголь-электричество

4. «Как электроэнергия доставляется потребителям». Факторы, влияющие на цены на бензин — объяснение энергии, ваше руководство по пониманию энергетики — Управление энергетической информации, www.eia.gov/energyexplained/electricity/delivery-to-consumers.php

5. Перлман, Ховард и Геологическая служба США. «Гидроэнергетика: как это работает». Адгезионные и когезионные свойства воды, Школа водных наук Геологической службы США, water.usgs.gov/edu/hyhowworks.html.

6. «Электросчетчики.”Министерство энергетики, www.energy.gov/energysaver/appliances-and-electronics/electric-meters.

различных способов производства электроэнергии

Производство электроэнергии обычно представляет собой двухэтапный процесс, при котором вода нагревается до кипения; энергия пара вращает турбину, которая, в свою очередь, вращает генератор, создавая электричество. Движение пара производит кинетическую энергию, энергию движущихся объектов. Вы также получаете эту энергию от падающей воды. Она прямо пропорциональна скорости движущегося тела — чем быстрее оно движется, тем больше энергии.Электричество производится, когда кинетическая энергия вращает медные катушки (или провод) внутри турбины.

Динамо-машины и генераторы

Ключевой частью большинства электростанций является генератор — устройство, преобразующее вращательное движение в электричество. Внутри генератора катушки из медной проволоки вращаются в сильном магнитном поле. При движении катушек магнитное поле создает электрический ток переменного тока внутри провода. Источник вращательного движения, будь то ветряная мельница, турбина или дизельный двигатель, не имеет значения; он просто должен быть достаточно сильным, чтобы включить генератор.Динамо-машина, «двоюродный брат» генератора, работает примерно так же; однако он производит постоянный ток (DC).

Электроэнергия из пара

Паровая электростанция (или генератор) вырабатывает электроэнергию за счет сжигания топлива, включая биомассу, уголь или нефть. Пар, образующийся в процессе, подается в турбину. Медный якорь (провод) в генераторе вращается при вращении турбины, создавая электрический ток. Примером паровой электростанции является электростанция Биг-Бенд, расположенная в Тампе, Флорида.

Гидроэлектроэнергия: падающая вода

Электроэнергия, вырабатываемая из воды, называется гидроэлектроэнергией. Падающая вода вращает лопасти гидроэлектрической турбины, которая, в свою очередь, перемещает медную арматуру внутри электрогенератора для производства электроэнергии. Примером гидроэлектростанции является плотина Грейт-Гувера (расположенная недалеко от Лас-Вегаса, США). Всего в нем 19 турбин, которые вырабатывают достаточно электроэнергии, чтобы обслуживать более 1,3 миллиона человек ежегодно.

Ветряные мельницы: энергия ветра

Ветряная электростанция вращает лопасти турбины, которые перемещают медную арматуру (которая находится внутри генератора) для выработки электроэнергии.В прошлом ветряные мельницы использовались для вращения колес прикрепленных мельниц. Современные ветряные мельницы превращают механическую энергию (генерируемую при движении) в электрическую. Примером ветряной электростанции является ветряная электростанция мощностью 107 мегаватт (МВт), расположенная недалеко от озера Бентон, штат Миннесота.

Солнечная энергия: энергия солнечного света

Фотоэлектрические элементы используют энергию солнечного света для производства электроэнергии. Постоянный ток (DC) генерируется стационарными солнечными панелями (которые состоят из фотоэлектрических элементов) и обычно используется для локальных приложений, включая запуск небольших ирригационных насосов или для зарядки устройств с батарейным питанием.Солнечные электростанции промышленного масштаба неуклонно набирают популярность с ростом цен на ископаемое топливо. Они работают, улавливая солнечную энергию через большие отражатели. Захваченная энергия затем направляется в приемники, в которых используются различные технологии для выработки электроэнергии с помощью газовых или паровых турбин. Электростанция Неллис — крупнейшая солнечная электростанция в Северной Америке. Он расположен на базе ВВС Неллис в округе Кларк, штат Невада, недалеко от Лас-Вегаса. Станция состоит из более чем 70 000 фотоэлектрических солнечных панелей, а ее максимальная электрическая мощность оценивается в 13 мегаватт переменного тока (13 МВт переменного тока).

Как подвести электричество в новый дом? — Энергия искры

Когда вы переезжаете в новый дом, будь то дом, который вы только что купили, или дом, который был недавно построен, установка инженерных сетей является обязательной. Меньше всего вам нужно получить ключи от вашего нового дома, но вы обнаружите, что еще не можете в него въехать.

Если вы строите новый дом, строительная бригада подключит его к сети, и дом будет подключен к сети местной коммунальной компанией, но электричество еще не подается.А если вы переезжаете на перепродажу, предыдущие владельцы не оставят за вас электричество.

Если вам нужно подключить электричество к новому дому, вот что вам нужно сделать, если вы не просто переносите услугу в новое место.

Шаг 1. Проверьте, находится ли в районе дерегулируемый энергетический рынок

Первый шаг в обеспечении электроэнергией любого типа жилой недвижимости — это проверить, находится ли дом на дерегулируемом рынке энергии. Город должен разместить на своем веб-сайте информацию о том, как работает рынок электроэнергии.Если вы использовали агента по недвижимости для покупки дома, он также может предоставить информацию о том, кто предоставляет коммунальные услуги для дома.

Если область регулируется, у вас не будет выбора в отношении поставщика услуг, потому что только одна компания имеет право предоставлять услуги. Вы можете перейти к Шагу 3. Но если ваш новый дом находится на дерегулируемом рынке энергии, это означает, что вы имеете право выбирать поставщика.

Шаг 2. Сравните поставщиков электроэнергии и планы

Домовладельцам, живущим на дерегулированном энергетическом рынке, нужно сделать дополнительный шаг, но это хорошая проблема.Исследования показали, что когда потребители находят время для сравнения поставщиков электроэнергии и планов, они могут получить больше преимуществ по сравнению с пребыванием на регулируемом рынке без выбора. Средняя разница в ставках между регулируемыми и дерегулируемыми энергетическими рынками сокращается, но если вы пропустите этот шаг, вы можете в конечном итоге заплатить больше, чем ожидалось.

В некоторых штатах созданы веб-сайты, на которых потребители могут сравнивать текущие планы и тарифы утвержденных поставщиков. Это хорошее место для начала, но чтобы получить полное представление о плане, вам нужно посетить веб-сайт поставщика электроэнергии.Таким образом, вы также сможете почувствовать культуру компании, клиентов, которых они обслуживают, и уровень их обслуживания.

Еще одна вещь, на которую следует обратить внимание, — это тариф на электричество, чтобы убедиться, что он соответствует вашим ожиданиям, и нет никаких скрытых комиссий, которые увеличивают тариф. Важно знать, что расценки на киловатт-час меняются в зависимости от местоположения и со временем. Тарифы на электричество, которые вы видите сегодня, могут не быть предложены завтра.

Шаг 3. Создайте учетную запись у поставщика электроэнергии

Теперь, когда вы знаете, кто будет вашим поставщиком электроэнергии, вам нужно создать учетную запись.Это нужно сделать как минимум за две недели до даты переезда.

Когда вы подписываетесь на электрическую услугу, настройка учетной записи может быть частью процесса. В противном случае вам нужно будет сделать это, чтобы обеспечить подачу электричества, настроить платежи и контролировать потребление электроэнергии.

Некоторые поставщики электроэнергии требуют от новых клиентов внести залог. Поскольку вы только что купили дом и пытаетесь минимизировать расходы на переезд, проверьте, можно ли отказаться от залога.Если у вас хорошая репутация у текущего поставщика электроэнергии, письма с указанием такого рода может быть достаточно, чтобы избежать уплаты залога.

Шаг 4. Установите дату начала обслуживания

Одна из самых важных частей процесса настройки — это выбор даты начала электрического обслуживания. Когда вы переезжаете в новый дом, лучше проявить осторожность и включить электричество за день или два до того, как вы планируете въехать. Если дата вашего въезда изменится на более раннюю, вам следует связаться с немедленно обратитесь к поставщику электроэнергии, чтобы настроить начало предоставления услуг.

Шаг 5. Отмените текущую услугу электроснабжения

Если вы не переезжаете на один и тот же рынок энергии и не планируете использовать одного и того же поставщика, вам необходимо будет прекратить предоставление ваших текущих услуг по электроснабжению. Поставщик услуг электроснабжения должен будет знать основную информацию о вашей учетной записи, включая адрес, и время, когда вы хотите, чтобы услуга была прекращена. Лучше всего выбрать день после того, как вы планируете переехать, чтобы в день переезда у вас было электричество на весь день.

Шаг 6. Убедитесь, что электричество включено / выключено

Первое, что вам нужно сделать в день переезда, — это убедиться, что на вашем новом месте есть электричество.Если он не работает по расписанию, немедленно позвоните провайдеру. Это может занять несколько часов или это могло произойти из-за недосмотра.

На следующий день позвоните в свою старую электрическую компанию, чтобы убедиться, что по вашему старому адресу отключили электричество. Вы также можете убедиться, что у них есть ваш новый адрес для выставления счетов, и спросить, как будет обрабатываться окончательный счет.

Если вам нужен газ или электричество, Spark Energy может предоставить вам необходимую энергию. Мы обслуживаем миллионы клиентов на рынках по всей стране. Используйте свой почтовый индекс для , чтобы узнать, какие планы на газ и электричество доступны в вашем районе.

Официальная вики по игре ARK: Survival Evolved

Простая демонстрация того, как работает электричество в ARK. Кабели рядом с активированным генератором светятся желтым светом и передают мощность на розетки. Предметы, которым требуется электричество, рядом с розеткой автоматически подключатся к ней.

Электричество в ARK: Survival Evolved можно использовать, начиная с 49-го уровня, используя электрический генератор и бензин.И в исключительных случаях Tek Generator с элементом или осколками элемента, побеждая боссов, см. Tek Generator для получения дополнительной информации.

Преимущества []

Электричество — основная часть поздней игры ARK, о которой мечтает каждый. Brighter Lights, холодильник, чтобы еда не гнила, кондиционер, чтобы в доме было хорошо и прохладно в жару, а также чтобы было уютно на морозе.

Дом []

Необходимые строительные материалы:

Советы []

Местоположение []

Предполагая, что у вас есть электрический генератор, разместите генератор в просторном месте, где будет достаточно места для других ваших инженерных сетей.Убедитесь, что вы спрятали его, чтобы никто не сломал его в рейде.

Кабельная сетка []

В большинстве случаев первый кабель, идущий от электрического генератора, должен быть вертикальным электрическим кабелем (может быть прямым электрическим кабелем). Затем этот кабель может стать чем угодно: электрической розеткой, перекрестком электрических кабелей или просто другим прямым кабелем, но на самом деле кабельная проводка для каждого отдельного человека будет варьироваться в зависимости от базовой конструкции.

  • Единственный способ изменить направление — подключить кабель другого типа.То есть, например, от прямого кабеля вы можете двигаться вертикально вверх и вниз, наклонять или наклонять под углом 45 ° или использовать перекресток для перехода на 90 ° на одном уровне. Также, к сожалению, вертикальный кабель значительно длиннее, чем высота стены. Чтобы кабели оставались в земле и в стенах и были максимально скрыты, не начинайте с генератора, а проложите пересечение прямо (не по диагонали) в фундаменте (или потолке) так, чтобы концы кабеля находились по краям. фундамента. Недостатком является то, что теперь вы можете привязать генератор только к концам кабеля и, возможно, не там, где он оптимально использует пространство.Если вы не видите или не помните, где заканчиваются ваши кабели, представьте, что кладете вертикальный или наклонный кабель, и посмотрите, к чему он привязывается.
  • Поскольку кабельные сети во многом похожи на гидротехнические сооружения, их легко сохранить простыми и квадратными. Это означает, что вам не нужны необычные углы, проходящие через основание. Самый простой способ включения питания — это проложить кабели вдоль стен вашей базы и сделать квадрат вокруг центра базы. Это обеспечивает покрытие всех углов основания, а также достаточное расстояние до центра основания.
  • Другой вид кабельной разводки называется «рыбья кость». Это просто пропускание прямого кабеля через середину основания с разветвителями каждого второго кабеля. Этот метод обеспечивает большее покрытие для центра базы и требует большего вмешательства, чтобы получить надлежащее покрытие для дальних сторон базы.
  • Создание сетей может быть эффективным методом кабельной проводки. Для этого вы должны запустить розетку от первого вертикального кабеля, чтобы выйти из генератора вот так:
    • Из розетки вы хотите разместить разветвитель с двумя прямыми электрическими кабелями, идущими слева, справа и спереди (убедитесь, что есть два прямых кабеля, идущих в каждом направлении, а не по одному в каждом направлении).После этого вы разместите разветвители на «прямых кабелях», разветвленных влево и вправо, как показано ниже:
    • Теперь вы хотите проложить свои пути вперед, чтобы покрыть территорию вашей базы. Здесь процесс становится ситуативным. У некоторых людей может быть небольшая база, и поэтому у них будет только один или два прямых кабеля, ответвляющихся с их пути. У людей с более крупными базами будет четыре-пять прямых кабелей, идущих от их пути.
  • Неважно, какой длины или насколько мал, важно проложить несколько розеток по всей кабельной сети для подключения ваших инженерных сетей.
  • Таймер спада электропроводов — 7 суток. [1]

Коммунальные услуги []

Безусловно, лучшая установка для ваших инженерных сетей — это держать квадратные объекты, такие как холодильники и кондиционеры, перпендикулярно стенам основания или ближе к центру, чтобы максимально увеличить пространство и обеспечить их легкое питание от вашей кабельной системы. Диапазон выходов составляет четыре основы, что оставляет дополнительное пространство для будущего планирования или ошибок. Розетка будет протягивать тонкий серый провод к машине после ее установки, а на HUD машины будет отображаться «без питания» или «с питанием» в зависимости от состояния вашего генератора.

Освещение []

В настоящее время в игре «Фонарные столбы» используются два типа ламп и всенаправленные фонарные столбы. Фонарные столбы дают свет только в определенном направлении, и их можно использовать только при освещении определенного объекта. Всенаправленные фонарные столбы освещают пространство и идеально подходят для освещения оснований и темных участков. Это лучший вариант для установки нового кабеля. Для обоих типов ламп требуется розетка, которая подключается к проводке, и лампы будут подключаться к розетке сами.

Предметы, требующие электричества []

Этот список содержит элементы, которые можно подключить к электрической розетке .

Видеоуроки []

Примечания []

  • Чтобы кабели были менее заметны, вы можете положить их на землю, а затем положить фундамент пола поверх кабелей.
  • Используя малярную кисть и краситель, вы можете изменить цвет света ламп.

Как установить коммунальные службы в вашем новом доме

Упаковка и транспортировка привлекают много внимания, когда дело доходит до процесса переезда, но есть еще один не менее важный шаг: выяснение того, как установить коммунальные службы в доме, который вы переезжаем в.Собираетесь ли вы в квартиру или только что купили дом, вам нужно подготовить все коммунальные услуги до дня переезда, чтобы вы не пытались поселиться без тепла, электричества или Wi-Fi (вздох !).

Если это не ваш первый шаг, вы, вероятно, уже прошли через процесс определения того, как настроить утилиты раньше. Но мы делаем это не часто, и не всегда ясно, как это сделать. Чтобы помочь вам, мы составили этот краткий обзор утилит, которые вам нужно будет настроить, и того, как это сделать.

Типы коммунальных услуг

Существует пять основных домашних коммунальных услуг, и в зависимости от того, где вы живете и каковы условия вашего договора аренды или ТСЖ (если применимо), вы можете нести ответственность за все пять или только некоторые из них.

    • Электричество
    • Природный газ
    • Вода и канализация
    • Кабель и Интернет
    • Вывоз мусора

Если вы сдаете в аренду и не совсем уверены, какие коммунальные предприятия собираетесь использовать ответственный за, проверьте ваш договор аренды.Если вы видите там «отопление», обратите внимание, что оно покрывается вашим счетом за электричество или природный газ (в зависимости от типа тепла, которое есть в вашей квартире). Некоторые домовладельцы также включают отопление в ежемесячную арендную плату. Спросите напрямую у арендодателя, если у вас есть какие-либо вопросы о ваших коммунальных услугах.

Как настроить утилиты

Вам нужно будет настроить каждую утилиту отдельно. Обычно рекомендуется начинать процесс за три недели до перемещения , хотя некоторые установки предлагают больше возможностей для маневра, чем другие.Однако, как правило, следует как можно больше предупреждать своих поставщиков коммунальных услуг, особенно если им нужно выйти и настроить службу вручную.

Имея в виду эту информацию, вот как настроить коммунальные службы, чтобы они были готовы к сдаче в эксплуатацию.

  1. Определите, кто ваши поставщики услуг (за 3-4 недели до вашего переезда)

    Поставщики коммунальных услуг для вашего нового дома могут отличаться от поставщиков услуг для вашего последнего дома. В некоторых городах, кварталах, многоквартирных домах и арендодателях / управляющих компаниях требования к поставщикам разные.Аналогичным образом, некоторые коммунальные предприятия обслуживают только определенные районы.

    Если вы переезжаете в приобретенную недвижимость, посетите веб-сайт своего города и / или округа, чтобы найти информацию о поставщиках коммунальных услуг. Если вы арендуете, проверьте договор аренды или спросите своего арендодателя. В большинстве случаев у вас будет один вариант поставщика для коммунальных услуг, таких как электричество, природный газ, вода и канализация, а также вывоз мусора, и несколько вариантов для Интернета и кабеля.

  2. Свяжитесь с коммунальными предприятиями (за 2 недели до вашего переезда)

    Теперь, когда вы знаете, кем будут ваши поставщики, вы можете связаться с ними.Если в вашем текущем доме уже настроены коммунальные услуги, вам нужно будет либо перенести существующие коммунальные услуги, либо отменить существующие коммунальные услуги и установить новые. Если вы начинаете с нуля, вам просто нужно будет создать новые.

    Если вам необходимо передать коммунальные услуги: Это применимо, если поставщик определенных коммунальных услуг не изменится между вашим текущим домом и вашим новым домом. В этом случае вам нужно будет связаться с провайдером и сообщить ему, что услугу следует перенести в другое место.Вам нужно будет указать свой новый адрес, а также точную дату, когда вам нужно отключить услугу в одном доме и включить в другом.

    Если вам нужно отменить коммунальные услуги: Это применимо, если вам нужно будет сменить провайдера. Свяжитесь с поставщиком утилиты, которую вы хотите отменить, и сообщите им, что вы хотите прекратить обслуживание. Им нужно будет знать адрес, по которому вы закрываете сервис, а также точную дату закрытия вашего аккаунта.

    Создание новой услуги: Чтобы настроить новую услугу, посетите веб-сайт вашего нового провайдера. Там должна быть информация о том, как настроить утилиты, но если нет, позвоните им напрямую. Вам нужно будет сообщить им адрес, по которому вы хотите установить коммунальные службы, а также дату, когда вам нужно начать обслуживание. В настоящее время большинству коммунальных предприятий также потребуется платежная информация в виде кредитной карты или текущего счета и маршрутного номера.Некоторые могут также потребовать проверки кредитоспособности и / или залога. Узнайте, что именно от вас требуется, прежде чем проходить процесс подачи заявки, чтобы у вас было все готово.

    Обратите внимание: если вы снимаете жилье, домовладелец может потребовать подтверждение того, что вы организовали установку коммунальных услуг. Узнайте, насколько заранее вам нужно будет предоставить эту информацию, чтобы в случае необходимости вы могли позвонить своим поставщикам услуг раньше.

  3. Убедитесь, что утилиты были успешно выключены / включены (текущий день)

    Всегда существует вероятность ошибок при переносе, отмене или настройке утилит.По этой причине рекомендуется убедиться, что все прошло должным образом, тем более что вы не хотите получать счет за коммунальные услуги, которые, по вашему мнению, были отключены.

    Проверить, включены ли коммунальные службы в вашем новом доме, достаточно просто. Убедитесь, что вы можете включить свет, включить плиту, спустить воду в туалете и подключиться к Интернету. Вывоз мусора вам придется подождать, чтобы подтвердить его, до дня сбора, но вы должны знать, правильно ли вы настроили его до конца недели.Если не включены какие-либо утилиты, которые должны быть включены, сразу звоните провайдеру. Если проблема связана с ошибкой на их стороне, они обычно могут ускорить обслуживание и сразу же настроить для вас утилиту.

    Для коммунальных услуг, которые вы отменили, дважды проверьте данные своей учетной записи, чтобы убедиться, что отключение произошло в назначенную дату. Если вы не видите эту информацию в Интернете, позвоните в компанию для подтверждения (и обязательно узнайте имя человека, с которым вы разговариваете — на всякий случай).

Обоснование счетов за коммунальные услуги

Ваши счета за коммунальные услуги могут немного усложниться, когда вы переедете. Некоторые поставщики коммунальных услуг взимают плату за передачу, в то время как у других могут быть добавлены некоторые дополнительные расходы на установку или обработку новых услуг.

Имейте в виду, что вам также следует ожидать окончательного счета за все коммунальные услуги, которые вы отключили. Они должны распределяться пропорционально, что означает, что плата за использование взимается только до дня, на который вы запланировали отмену.В некоторых случаях вам может действительно быть должны денег от вашего поставщика коммунальных услуг, например, если вы заплатили за вывоз мусора в течение определенного месяца.

Даже если вы настроили автоматические платежи, взгляните на свои первые (и последние) счета, чтобы дважды проверить, все ли там правильно. Всегда полезно найти момент, чтобы убедиться, что все прошло так, как должно было.

Нужна помощь с переездом? Используйте Moving.com, чтобы быстро и легко найти надежных перевозчиков в вашем районе (и позволить им заниматься логистикой переезда, а вы имеете дело с коммунальными предприятиями).

Как в вашем штате вырабатывается электроэнергия?

Этот интерактив был обновлен в 2020 году. Посетите эту страницу, чтобы увидеть последние.

В целом, ископаемое топливо по-прежнему доминирует в производстве электроэнергии в Соединенных Штатах. Но переход с угля на природный газ помог снизить выбросы углекислого газа и другие загрязнения. В прошлом году уголь был основным источником выработки электроэнергии для 18 штатов по сравнению с 32 штатами в 2001 году.

Главный источник производства электроэнергии в каждом штате

Но эксперты предупреждают, что одного перехода на природный газ недостаточно для сокращения выбросов и предотвращения опасного глобального потепления.

«Переход с угля на газ — это хорошо в краткосрочной перспективе, но это не решение в долгосрочной перспективе», — сказал Северин Боренштейн, директор Института энергетики Калифорнийского университета в школе бизнеса Haas в Беркли.«Газ по-прежнему производит много парниковых газов. Мы не можем оставаться на газе и решить эту проблему. В конечном итоге нам придется перейти к источникам с гораздо меньшим или нулевым содержанием углерода ».

Мы составили схему производства электроэнергии в каждом штате в период с 2001 по 2017 год, используя данные Управления энергетической информации США. Прокрутите вниз или перейдите к своему состоянию:

В 2001 году уголь служил топливом для более чем половины электроэнергии, производимой в Алабаме, но с тех пор несколько стареющих угольных электростанций штата были закрыты или перешли на сжигание более дешевого природного газа.К 2017 году основным источником электроэнергии в штате был природный газ, за ​​которым следовала атомная энергия. Уголь занял третье место, обеспечивая чуть менее четверти выработки электроэнергии в штате.

Алабама вырабатывает больше электроэнергии, чем потребляет, и обычно отправляет около одной трети своей продукции в соседние штаты.

Природный газ был основным источником электроэнергии на Аляске с 2001 года, но за это время доля гидроэлектроэнергии увеличилась.Государство стремится к 2025 году получать 50 процентов своей электроэнергии из возобновляемых источников, но эта цель является добровольной и не имеет юридического значения.

Аляска имеет свою собственную электрическую сеть, а это означает, что «какая бы электроэнергия ни была произведена, они потребляют то, что они потребляют», — сказал Гленн МакГрат, аналитик энергетических систем Управления энергетической информации. «Это настолько изолированно, насколько это возможно».

Многие сельские районы Аляски вообще не подключены к основной сети и используют дизельные генераторы для выработки энергии.

Уголь

был основным источником выработки электроэнергии в Аризоне до 2016 года, когда природный газ производил больше энергии. В прошлом году природный газ, атомная энергия и уголь обеспечивали чуть менее трети электроэнергии, производимой в штате.

Но ожидается, что угольная энергетика продолжит снижаться. Государственная генерирующая станция навахо, крупнейшая угольная электростанция на Западе, должна быть закрыта в 2019 году, в основном из-за конкуренции со стороны более дешевого природного газа.

Аризона поставляет электроэнергию на весь Юго-Запад. Штат обладает богатым солнечным потенциалом и потребует, чтобы коммунальные предприятия получали 15 процентов своей электроэнергии из возобновляемых источников к 2025 году. В ноябре избиратели отклонили инициативу голосования, которая повысила бы эту цель до более амбициозных 50 процентов к 2035 году.

Уголь

был основным источником электроэнергии, производимой в Арканзасе каждый год в период с 2001 по 2017 год, но его доля в генерации в течение этого времени медленно снижалась.В то же время объем природного газа вырос и обеспечил более четверти электроэнергии, произведенной в штате в прошлом году, по сравнению с 6 процентами в 2001 году.

Арканзас производит больше электроэнергии, чем потребляет, и экспортирует электроэнергию в соседние штаты.

Природный газ является основным источником электроэнергии в Калифорнии с 2001 года. Но половина электроэнергии, произведенной в штате в прошлом году, была получена из возобновляемых источников, включая солнечную, ветровую, геотермальную и гидроэлектроэнергетику.

Электроэнергетика, объем которой сократился в период с 2014 по 2015 год из-за засухи, в прошлом году снова вырос, обеспечивая наибольшую долю возобновляемой генерации в штате. Солнечная энергия быстро выросла за последние пять лет, в основном из-за государственной политики, такой как агрессивный стандарт возобновляемой энергии. В этом году Калифорния обязалась к 2045 году получать всю свою электроэнергию из источников с нулевым выбросом углерода.

В прошлом году около четверти электроэнергии, потребляемой в штате, в том числе вырабатываемой за счет угля, поступало из-за пределов его границ.(Импорт не показан на графике выше.) Но Калифорния планирует прекратить покупать электроэнергию у угольных электростанций в Юте и других штатах.

Подавляющее большинство электроэнергии, производимой в Колорадо, производится из ископаемых источников топлива: около половины из угля и четверть из природного газа. Но за последнее десятилетие ветроэнергетика набирала обороты. В прошлом году ветер был третьим по величине источником электроэнергии, производимой в Колорадо, на его долю приходилась почти пятая часть выработки в штате.

Колорадо установило требование, чтобы к 2020 году 30 процентов электроэнергии, продаваемой коммунальными предприятиями, поступало из возобновляемых источников.

Ядерная энергия и природный газ обеспечивали подавляющее большинство электроэнергии, произведенной в Коннектикуте в период с 2001 по 2017 год. В то время росла выработка природного газа, на долю которого в прошлом году приходилось почти половину выработки электроэнергии в штате по сравнению с почти 13%. двумя десятилетиями ранее.В штате почти полностью исчезла угольная генерация, и последнюю оставшуюся угольную электростанцию ​​Коннектикута, Бриджпорт-Харбор, планируется закрыть в 2021 году.

В 2017 году пять процентов электроэнергии, произведенной в Коннектикуте, было произведено из возобновляемых источников. В этом году штат расширил свой стандарт возобновляемой энергии, потребовав, чтобы коммунальные предприятия получали 40 процентов электроэнергии, которую они продают потребителям, из возобновляемых источников к 2030 году.

Природный газ заменил уголь в качестве основного источника электроэнергии, производимой в Делавэре в 2010 году, и с тех пор доля угля в выработке электроэнергии резко снизилась.На уголь приходилось 70 процентов электроэнергии, произведенной в Делавэре в 2008 году, на пиковом уровне, но чуть меньше 5 процентов к 2017 году. За тот же период доля природного газа в выработке электроэнергии увеличилась более чем в четыре раза.

Частично благодаря этому сдвигу выбросы углекислого газа в электроэнергетическом секторе штата снизились за последнее десятилетие. Делавэр потребует, чтобы к 2025 году коммунальные предприятия получали 25 процентов электроэнергии из возобновляемых источников.

По данным E.Я. Остальное поступает из соседних государств через региональную сеть. (Импорт не показан в таблице выше.)

В 2001 году более трети электроэнергии, производимой во Флориде, приходилось на сжигание угля, но два года спустя природный газ превзошел уголь в качестве основного источника выработки электроэнергии в штате и продолжал увеличивать свою долю в структуре электроэнергетики штата. К 2017 году природный газ составлял две трети производства электроэнергии Флориды, что более чем вдвое превышало средний показатель по стране.

Флорида является вторым по величине производителем электроэнергии в стране после Техаса, но по-прежнему полагается на импорт из соседних штатов для удовлетворения потребительского спроса.

Несмотря на свое прозвище, Солнечный штат вырабатывает очень мало энергии за счет солнечной энергии и не имеет потребности в возобновляемых источниках энергии.

Уголь обеспечивал большую часть выработки электроэнергии в Грузии в течение 2000-х годов, но его объем снизился по мере увеличения выработки природного газа.В последние годы доля угольной генерации резко упала, поскольку несколько устаревающих угольных электростанций были выведены из эксплуатации.

Коммунальные предприятия штата находятся в процессе строительства двух новых ядерных реакторов, это единственные новые ядерные проекты, строящиеся в стране.

Около десятой части электроэнергии в Грузии в прошлом году приходилось на возобновляемые источники, в основном из биомассы и гидроэлектроэнергии. Но солнечная энергия в штате быстро растет.Джорджия не предъявляет каких-либо требований к возобновляемым источникам энергии в масштабах штата, но город Атланта разрабатывает план по обеспечению всей электроэнергии из возобновляемых источников к 2035 году.

Гавайи в последние два десятилетия в значительной степени полагались на импортную нефть для производства электроэнергии. Но у штата есть смелый план — к 2045 году вырабатывать всю свою энергию из местных возобновляемых источников.

В прошлом году на долю возобновляемых источников энергии приходилось четверть электроэнергии, производимой на Гавайях, по сравнению с менее чем одной десятой в 2001 году.Производство солнечной энергии, в основном из небольших крышных панелей, быстро выросло в штате за последние пять лет.

Гидроэнергетика долгое время преобладала в структуре генерирующих мощностей Айдахо. Но в последние годы его доля снизилась, отчасти из-за засухи. Штат по-прежнему производит большую часть электроэнергии из возобновляемых источников: в прошлом году ветряная энергия вырабатывала 15 процентов электроэнергии в штате по сравнению с менее чем 2 процентами десять лет назад.Солнечная энергия, хотя и небольшая, в период с 2016 по 2017 год резко выросла.

Айдахо в значительной степени зависит от импорта электроэнергии из других штатов. В то время как уголь составляет лишь часть производства внутри штата, в конечном итоге, по данным E.I.A., «около трети электроэнергии, потребляемой в Айдахо, вырабатывается угольными электростанциями, расположенными в других штатах». (Данные импорта не показаны на диаграмме выше.)

Атомная энергия — главный источник электроэнергии в штате Иллинойс.Он обеспечивает более половины электроэнергии, производимой в штате в течение почти двух десятилетий. Уголь также является важным источником энергии для государства — даже превосходя ядерный как источник энергии высшего качества дважды за последнее десятилетие, в 2004 и снова в 2008 году, — но его доля снизилась в последние годы, поскольку старые электростанции были выведены из эксплуатации или преобразованы для сжигания природного газа. Как природный газ, так и энергия ветра увеличились за последнее десятилетие.

Иллинойс производит «значительно больше» электроэнергии, чем потребляет в штате, согласно данным E.Я. Он отправляет излишки в государства Средней Атлантики и Среднего Запада через региональные сети.

Уголь вырабатывает большую часть электроэнергии, производимой в Индиане в течение почти двух десятилетий, но в последние годы природный газ и энергия ветра получили широкое распространение. В 2001 году на природный газ приходилось 2 процента выработки электроэнергии в штате, но в 2017 году он вырос до почти 20 процентов.

Законодательное собрание штата Индиана установило добровольный стандарт чистой энергии в 2011 году, который поощряет электроэнергетические компании получать все больше энергии из возобновляемых и других альтернативных источников энергии.Однако, по данным E.I.A., в прошлом году в программе не участвовали коммунальные предприятия Индианы.

За последнее десятилетие в Айове произошел взрывной рост энергии ветра. Ветер обеспечивал лишь 1 процент электроэнергии, производимой в штате в 2001 году, но вырос почти до 40 процентов к 2017 году. Айова все еще производит почти половину своей электроэнергии из угля, но доля угля в генерации снизилась с 2010 года.

В абсолютном выражении штат, один из самых ветреных в стране, был третьим по величине производителем энергии ветра в прошлом году после Техаса и Оклахомы.Айова производит больше энергии, чем потребляет, отправляя излишки в соседние штаты.

Айова в 1983 году стала первым штатом, принявшим закон, требующий от коммунальных предприятий получать некоторое количество электроэнергии из возобновляемых источников, но штат не обновил свои стандарты.

Как и во многих штатах Великих равнин, в Канзасе за последнее десятилетие наблюдался значительный рост ветроэнергетики. Доля электроэнергии, вырабатываемой за счет ветра, с 2010 года увеличилась в пять раз.

В 2009 году законодательный орган Канзаса принял стандарт возобновляемой энергии, требующий от коммунальных предприятий получать все большее количество электроэнергии из ветряных, солнечных и других возобновляемых источников — до 20 процентов к 2020 году. Но губернатор Сэм Браунбэк и законодатели штата смягчили эту меру в 2015 году. , сделав цель добровольной после того, как консервативные группы, связанные с промышленным конгломератом Koch Industries, выступили против более строгих стандартов.

Уголь

по-прежнему обеспечивает подавляющее большинство электроэнергии, производимой в Кентукки, штате, давно занимающемся добычей угля.В прошлом году уголь был источником почти 80 процентов государственной генерации, но на протяжении большей части последних двух десятилетий это число колебалось ближе к 90 процентам.

С 2014 года ряд старых угольных электростанций Кентукки был остановлен или переоборудован для сжигания природного газа, который обеспечивал 13 процентов выработки электроэнергии в штате в 2017 году.

Природный газ обеспечивает большую часть производства электроэнергии в Луизиане, входящей в пятерку крупнейших производителей природного газа в стране.В прошлом году на газ приходилось 60 процентов электроэнергии, производимой в штате, по сравнению с 46 процентами в 2001 году. За это время объем угольной генерации снизился, опустившись со второго по величине источника энергии в штате на третье место. .

Луизиана также получает электричество из соседних штатов. (Импорт не указан в таблице выше.)

Мэн «лидирует в Новой Англии по производству ветровой энергии», согласно E.Я. В прошлом году ветер поставлял пятую часть электроэнергии, производимой в штате. Электроэнергия и энергия биомассы, получаемая при сжигании древесины и других органических материалов, были следующими по величине источниками генерации.

С 2000 года государство требует, чтобы поставщики электроэнергии получали 30 процентов электроэнергии, которую они продают потребителям, из существующих возобновляемых источников. Ожидалось, что в 2017 году коммунальные предприятия получат 10 процентов от новых возобновляемых источников. У государства есть отдельные цели по развитию ветроэнергетики.

Общее количество электроэнергии, производимой в штате Мэн, снизилось с 2010 года, особенно за счет природного газа, и штат все больше полагается на импорт энергии из Канады. (Импорт не включен в приведенную выше таблицу.)

Угольная энергетика в Мэриленде снижалась в течение десяти лет и обеспечивала менее половины электроэнергии, производимой в штате с 2012 года. За это время увеличилась доля электроэнергии, вырабатываемой атомной энергетикой и природным газом.

Производство солнечной энергии, хотя и невелико, за последние несколько лет быстро выросло. С 2004 года государство требует, чтобы все большее количество электроэнергии, продаваемой коммунальными предприятиями, поступало из возобновляемых источников, с целью достичь 25 процентов к 2020 году.

Мэриленд потребляет больше электроэнергии, чем производит, и импортирует почти половину своей энергии из других среднеатлантических штатов через региональную сеть.(Импорт не включен в приведенную выше таблицу.)

За последние два десятилетия доля природного газа в производстве электроэнергии в Массачусетсе увеличилась более чем в два раза. Производство угля и нефти резко упало в тот же период, а последняя крупная угольная электростанция в штате была закрыта в прошлом году. С 2013 года в штате резко увеличилось количество электроэнергии, производимой за счет солнечной энергии.

В этом году штат ужесточил свои полномочия для коммунальных предприятий по продаже электроэнергии из возобновляемых источников, повысив требование до 35 процентов от общего объема продаж к 2030 году.Новое законодательство также поощряет развитие морской ветроэнергетики.

Массачусетс потребляет больше электроэнергии, чем производит в штате, а остаток получает от близлежащих штатов через региональную сеть. (Импорт не показан на диаграмме выше).

Уголь

оставался основным источником электроэнергии, производимой в Мичигане в прошлом году, но его доля в производстве снизилась с немногим более 60 процентов в 2001 году до чуть менее 40 процентов в 2017 году.За тот же период доля природного газа в выработке электроэнергии увеличилась почти вдвое. Ветер, основной возобновляемый источник энергии в штате Мичиган, в прошлом году обеспечил почти 5 процентов электроэнергии, произведенной в штате.

В 2008 году штат Мичиган потребовал, чтобы коммунальные предприятия и другие поставщики электроэнергии получали к 2015 году не менее 10 процентов электроэнергии, которую они продают потребителям, из возобновляемых источников. Эта цель была достигнута, а к 2021 году она была увеличена до 15 процентов.

Уголь был основным источником электроэнергии, производимой в Миннесоте в течение последних двух десятилетий.Но доля угольной генерации снизилась в период с 2001 по 2017 год по мере роста ветровой и газовой генерации.

Штат требует, чтобы коммунальные предприятия постепенно продавали увеличивающееся количество электроэнергии из возобновляемых источников, при этом к 2025 году требуется 25 процентов от общего объема продаж.

В прошлом году на природный газ приходилось более трех четвертей электроэнергии, произведенной в Миссисипи. Уголь, когда-то являвшийся основным источником электроэнергии в штате, за последнее десятилетие сократился, уступая место более дешевому природному газу.Уголь обеспечивал 36 процентов электроэнергии, произведенной в штате в 2001 году, но только 8 процентов в 2017 году.

Структура производства электроэнергии в штате Миссури практически не изменилась за почти два десятилетия. Уголь обеспечивал подавляющее большинство электроэнергии, производимой в штате в период с 2001 по 2017 год, и лишь немного снизился за это время, поскольку старые угольные электростанции отключились или перешли на сжигание природного газа.

Миссури потребует, чтобы коммунальные предприятия к 2021 году получали не менее 15 процентов электроэнергии, которую они продают, из возобновляемых источников, в том числе небольшую часть из солнечной энергии.

Уголь был основным источником электроэнергии, производимой в Монтане в течение почти двух десятилетий, но его доля в производстве снизилась с 70 процентов в 2001 году до чуть менее 50 процентов в прошлом году. Гидроэнергетика, второй по величине источник электроэнергии в штате, увеличила свою долю за это время почти до 40 процентов, а энергия ветра выросла до 8 процентов от выработки внутри штата.

По данным E.Я. Остальное государство отправляет своим западным соседям.

Уголь

был основным источником электроэнергии, производимой в Небраске в течение почти двух десятилетий, но его доля в производстве несколько снизилась в период с 2001 по 2017 год. Ядерная энергия обеспечивала в среднем 25 процентов выработки электроэнергии в штате в течение этого времени, но ее доля варьировалась из года в год. году.

Wind увеличивал свою долю в общем объеме производства за последнее десятилетие, на него приходилось 15 процентов электроэнергии, произведенной в штате в прошлом году.По данным E.I.A., Небраска имеет потенциал для значительно большего количества энергии ветра.

Природный газ вытеснил уголь в качестве основного источника электроэнергии в Неваде в 2005 году. Крупнейшая угольная электростанция штата Мохаве была отключена в конце того же года, что еще больше снизило роль угля в структуре электроэнергетики штата. С тех пор многие угольные генераторы в Неваде закрылись из-за конкуренции со стороны дешевого природного газа и законов штата, требующих развития возобновляемых источников энергии.

В прошлом году природный газ обеспечивал почти 70 процентов электроэнергии, производимой в штате, за ним следовала солнечная энергия, которая обеспечивала 12 процентов выработки в штате. До недавнего времени Невада требовала, чтобы 25 процентов электроэнергии, продаваемой коммунальными предприятиями штата, поступало из возобновляемых источников к 2025 году. В ноябре жители Невады проголосовали за повышение этого требования до 50 процентов к 2030 году.

Основная часть электроэнергии, вырабатываемой в Нью-Гэмпшире, поступает от атомной электростанции Сибрук, крупнейшего реактора в Новой Англии.Природный газ обеспечивает примерно пятую часть электроэнергии, производимой в штате с начала 2000-х годов, когда начали работать две новые генерирующие станции. Доля электроэнергии Нью-Гэмпшира, вырабатываемой из угля, за последние два десятилетия сократилась с 25 процентов в 2001 году до менее 2 процентов в 2017 году.

Штат требует, чтобы коммунальные предприятия получали 25 процентов электроэнергии, которую они продают потребителям, из возобновляемых источников к 2025 году. Два основных источника возобновляемой энергии в штате — это биомасса, или энергия, получаемая от сжигания древесины и других органических веществ, и гидроэлектроэнергия. мощность.

Нью-Гэмпшир производит больше электроэнергии, чем потребляется в штате, и отправляет около половины в соседние штаты через региональную электрическую сеть Новой Англии. (Экспорт не включен в приведенную выше таблицу.)

Атомная энергия была основным источником электроэнергии в Нью-Джерси до недавнего времени, когда ее вытеснил природный газ. В прошлом году природный газ составлял почти половину производства электроэнергии в штате, а ядерная энергия — 45 процентов.Солнечная энергия обеспечивала 4% электроэнергии штата.

В этом году штат Нью-Джерси повысил свой стандарт возобновляемой энергии и потребовал, чтобы 21 процент электроэнергии, продаваемой в штате, поступал из возобновляемых источников к 2021 году, с увеличением этого требования до 35 процентов к 2025 году и до 50 процентов к 2030 году. Чтобы снизить выбросы углерода, штат также принял закон для поддержки своих атомных станций, которые в настоящее время обеспечивают большую часть энергии с нулевым уровнем выбросов.

Государство получает часть потребляемой энергии через региональную сеть Срединно-Атлантического океана. (Импорт не включен в приведенную выше таблицу.)

Уголь

был основным источником производства электроэнергии в Нью-Мексико на протяжении почти двух десятилетий. Но угольная энергия снизилась с 2004 года «в ответ на ужесточение требований к качеству воздуха, более дешевый природный газ и решение Калифорнии в 2014 году прекратить закупку электроэнергии, вырабатываемой из угля» в соседних штатах, по данным E.Я.

На природный газ, ветер и солнечную энергию приходилось немногим менее половины электроэнергии, произведенной в Нью-Мексико в прошлом году, по сравнению с 15 процентами двумя десятилетиями ранее. Штат потребует, чтобы коммунальные предприятия получали 20 процентов электроэнергии, которую они продают, за счет возобновляемых источников энергии к 2020 году. Нью-Мексико также стремится увеличить производство из источников с нулевым выбросом углерода, поскольку он отправляет значительный объем электроэнергии в Калифорнию, штат с одними из самых строгих политика в области возобновляемых источников энергии в стране.

Природный газ и атомная энергия обеспечивали большую часть электроэнергии, производимой в Нью-Йорке в течение почти двух десятилетий, и их доля увеличилась по мере сокращения использования угля в штате. За последнее десятилетие Нью-Йорк также производил около пятой части своей электроэнергии за счет гидроэнергетики, крупнейшего в штате источника возобновляемой энергии.

Штат потребует, чтобы коммунальные предприятия получали 50 процентов электроэнергии, которую они продают потребителям, из возобновляемых источников к 2030 году. Это амбициозная цель, направленная на существенное сокращение выбросов парниковых газов.Ветровая и солнечная энергия составляют небольшую, но растущую часть производства электроэнергии в Нью-Йорке, вместе обеспечивая чуть более 4 процентов электроэнергии штата в прошлом году.

Нью-Йорк, как правило, потребляет больше энергии, чем создает, и импортирует часть электроэнергии из соседних штатов и Канады. (Импорт электроэнергии не включен в приведенную выше таблицу.)

Coal обеспечивал большую часть выработки электроэнергии в Северной Каролине в период с 2001 по 2011 год.Но почти 30 угольных энергоблоков штата были остановлены в течение следующих шести лет, и к 2017 году выработка угля упала ниже уровня ядерной энергии и мощности, производимой на природном газе. Производство природного газа увеличилось после национального бума гидроразрыва пласта в конце 2000-х годов и стало вторым по величине источником производства электроэнергии в штате в 2016 году.

Северная Каролина в настоящее время является единственным южным штатом со значительной выработкой солнечной энергии. Уникальное осуществление государством принятого на протяжении десятилетий федерального закона — Закона о политике регулирования коммунальных предприятий 1978 года — способствовало развитию солнечной энергетики в масштабах коммунальных предприятий.Северная Каролина также установила требование, чтобы к 2021 году коммунальные предприятия получали 12,5% электроэнергии, которую они продают потребителям, из возобновляемых источников энергии.

Как и во многих штатах Великих равнин, за последнее десятилетие в Северной Дакоте начался рост ветровой энергии. В прошлом году ветер вырабатывал более четверти электроэнергии, производимой в штате, по сравнению с менее чем 2 процентами десятилетием ранее.

В 2007 году законодательный орган Северной Дакоты поставил перед коммунальными предприятиями добровольную цель: к 2015 году получать 10 процентов электроэнергии, продаваемой потребителям, из возобновляемых или вторичных источников энергии.По мнению аналитиков, эта цель была достигнута и даже превзойдена.

Северная Дакота производит больше электроэнергии, чем потребляется в штате, и примерно половина ее отправляется соседям. (Экспорт не показан выше.)

Уголь

был основным источником электроэнергии, производимой в Огайо в течение почти двух десятилетий, но его доля в выработке электроэнергии снижалась с 2011 года, поскольку несколько угольных электростанций штата были закрыты.За тот же период доля природного газа в структуре производства электроэнергии в Огайо увеличилась.

Ветер в настоящее время является основным источником возобновляемой энергии в штате, хотя в прошлом году он обеспечил лишь около 1 процента электроэнергии, произведенной в Огайо. Однако государство хочет расширить это. К концу 2026 года коммунальные предприятия должны будут получать не менее 12,5% электроэнергии, которую они продают потребителям, из возобновляемых источников.

Основная часть выработки электроэнергии в Оклахоме на протяжении большей части последних двух десятилетий приходилась на природный газ и уголь, причем эти два источника часто конкурировали за право быть основным источником электроэнергии в штате.Но в 2016 году ветер обогнал уголь как второй по величине источник электроэнергии, производимый в штате.

В прошлом году штат уступал только Техасу по общему объему выработки электроэнергии с помощью ветра.

В 2010 году Оклахома потребовала, чтобы к 2015 году 15 процентов ее генерирующих мощностей приходилось на возобновляемые источники. Власти также указали природный газ в качестве предпочтительного выбора для новых проектов использования ископаемого топлива. К 2012 году штат превысил план по возобновляемым источникам энергии.

Большая часть электроэнергии, производимой в Орегоне в любой конкретный год, приходится на гидроэнергетику, но доля, производимая за счет воды, колеблется в зависимости от количества осадков. Мощность природного газа обычно увеличивается в засушливые годы и уменьшается в годы с достаточным количеством гидроэлектроэнергии.

За последнее десятилетие ветроэнергетика стала третьим по величине источником электроэнергии в штате.Стремясь стимулировать использование возобновляемых источников энергии, не связанных с гидроэлектростанциями, штат Орегон потребует от своих крупнейших коммунальных предприятий к 2040 году получать 50 процентов электроэнергии, которую они продают, из новых возобновляемых источников энергии. старая гидроэнергетика.

Уголь

обеспечивал основную часть электроэнергии, производимой в Пенсильвании до 2014 года, когда она впервые упала ниже уровня ядерной энергии.Доля угольной генерации в штате снизилась после бума гидроразрыва пласта в конце 2000-х, когда стареющие угольные электростанции закрылись из-за конкуренции со стороны более дешевого природного газа.

В прошлом году ядерная энергия была основным источником электроэнергии, производимой в Пенсильвании. Но природный газ оказывает экономическое давление и на ядерные генераторы штата: один реактор должен быть остановлен в 2019 году. Сторонники ядерной энергетики, заявляя, что потеря этой безэмиссионной электроэнергии является плохой новостью для изменения климата, обратились за государственными субсидиями. для ядерной энергетики.

Пенсильвания потребует, чтобы к 2021 году 18 процентов электроэнергии, которую коммунальные предприятия продают потребителям, приходилось на возобновляемые и альтернативные источники энергии, при этом не менее 0,5 процента приходилось на солнечную энергию. В прошлом году возобновляемые источники энергии составили около 5 процентов производства в штате.

Пенсильвания — третий по величине производитель электроэнергии в стране после Техаса и Флориды. Штат является крупным поставщиком энергии в Среднеатлантический регион.

Природный газ преобладает в производстве электроэнергии в Род-Айленде, но энергия ветра и солнца, хотя и остается небольшой, в последние годы быстро растет.

Род-Айленд потребует, чтобы поставщики электроэнергии получали почти две пятых электроэнергии, которую они продают потребителям, из возобновляемых источников к 2035 году. Штат потребляет больше электроэнергии, чем производит, а остальную часть получает от соседних штатов.(Импорт не включен в приведенную выше таблицу.)

Большая часть электроэнергии, вырабатываемой в Южной Каролине, вырабатывается ядерной энергетикой, при этом уголь и природный газ занимают второе и третье места соответственно. Доля угля в выработке электроэнергии за последнее десятилетие снизилась по мере увеличения выработки электроэнергии из природного газа.

Южная Каролина производит больше энергии, чем потребляет, и отправляет излишки в соседние штаты.

Гидроэнергетика поставляла большую часть электроэнергии, производимой в Южной Дакоте на протяжении большей части последних двух десятилетий, но угольная генерация превосходила гидроэлектроэнергетику в течение трех лет: 2001, 2004 и 2008 годов. С тех пор доля угля в структуре генерации штата снизилась, в то время как увеличилась доля ветроэнергетики.

В прошлом году ветер был вторым по величине источником электроэнергии, производимой в Южной Дакоте, на него приходилась почти треть выработки в штате.

Южная Дакота экспортирует электроэнергию в штаты Центральной и Западной США.

Coal поставляла большую часть электроэнергии, произведенной в Теннесси в период с 2001 по 2016 год, но ее доля в генерации начала снижаться около десяти лет назад, когда доля электроэнергии на природном газе увеличилась. В прошлом году угольная генерация опустилась ниже атомной энергии впервые почти за два десятилетия.

Теннесси потребляет больше электроэнергии, чем производит, и компенсирует дефицит электричеством из близлежащих штатов.(Импорт не включен в приведенную выше таблицу.)

Техас производит больше электроэнергии, чем любой другой штат, и с 2001 года основным источником ее выработки является природный газ, а на втором месте — уголь. Но доля угольной генерации снизилась по мере роста ветроэнергетики. В 2014 году ветер обогнал атомную энергетику и стал третьим по величине источником электроэнергии, производимым в штате. Техас в целом производит больше энергии из ветра, чем любой другой штат, при этом Оклахома и Айова занимают второе и третье места.

Техас принял требование о возобновляемых источниках энергии в 1999 году, требуя от штата установить 10 000 мегаватт возобновляемых источников энергии к 2025 году. Эта цель уже достигнута.

Большая часть электроэнергии, производимой в Юте, производится из угля, но доля угля снизилась за последние несколько лет по мере увеличения объемов природного газа.

Штат производит больше энергии, чем потребляет, и отправляет излишки в соседние штаты, такие как Калифорния.По крайней мере, одна электростанция в Юте переходит с угля на природный газ, чтобы соответствовать более строгим экологическим нормам Калифорнии.

В 2016 году солнечная энергия стала крупнейшим источником возобновляемой энергии в штате, а в прошлом году ее доля снова увеличилась. Юта поставила перед коммунальными предприятиями цель к 2025 году получать 20 процентов электроэнергии, которую они продают, из возобновляемых источников.

Большая часть электроэнергии, производимой в Вермонте, производилась на атомной электростанции до 2014 года, когда была закрыта единственная в штате атомная электростанция Vermont Yankee.С тех пор почти вся электроэнергия, производимая в штате, поступает из возобновляемых источников, включая гидроэнергетику, биомассу, ветер и солнце. Но абсолютная генерирующая мощность Вермонта существенно снизилась.

Вермонт импортирует большую часть электроэнергии из близлежащих штатов и Канады. По данным E.I.A., в прошлом году собственная генерация штата «обеспечивала лишь около двух пятых электроэнергии, потребляемой в Вермонте».

Амбициозная цель Вермонта в области возобновляемых источников энергии требует, чтобы к 2032 году 75 процентов электроэнергии, продаваемой в штате, поступало из возобновляемых источников, в том числе 10 процентов из небольших внутренних источников.

Уголь был основным источником электроэнергии, производимой в Вирджинии в период с 2001 по 2008 год, когда его доля начала снижаться. Производство природного газа в штате увеличилось после бума гидроразрыва пласта в конце 2000-х годов, и в 2015 году оно стало основным источником выработки электроэнергии в штате. За последние два десятилетия ядерная генерация в среднем обеспечивала чуть более трети электроэнергии Вирджинии. .

Вирджиния потребляет больше электроэнергии, чем производит, поэтому получает дополнительную электроэнергию из близлежащих штатов через региональную сеть Срединно-Атлантического океана.Штат поставил перед коммунальными предприятиями добровольную цель получать 15 процентов электроэнергии, которую они продают, из возобновляемых источников к 2025 году.

Гидроэнергетика поставляет большую часть электроэнергии, производимой в Вашингтоне каждый год с 2001 года, но ее доля в выработке штата колеблется в зависимости от количества осадков. Уголь, природный газ, атомная энергия и энергия ветра чередовались в качестве второго по величине источника электроэнергии, производимой в штате на протяжении большей части последних двух десятилетий.

Вашингтон производит больше электроэнергии, чем потребляет, и экспортирует электроэнергию в Канаду и другие западные штаты. Штат потребует, чтобы его более крупные коммунальные предприятия к 2020 году получали 15 процентов продаж электроэнергии из новых возобновляемых источников.

Уголь доминирует в структуре производства электроэнергии Западной Вирджинии, обеспечивая более 90 процентов электроэнергии, производимой в штате каждый год в течение почти двух десятилетий.В период с 2001 по 2017 год гидроэнергетика обеспечивала небольшую часть выработки внутри штата. В последние годы доля ветра и природного газа увеличилась, но на каждый из этих источников приходилось лишь около 2 процентов электроэнергии, произведенной в штате в прошлом году.

После многих лет лоббирования консервативных групп Западная Вирджиния стала первым штатом, отменившим свой стандарт возобновляемой энергии в 2015 году. Закон требовал, чтобы коммунальные предприятия получали 25 процентов своей электроэнергии из альтернативных и возобновляемых источников энергии к 2025 году.Противники стандарта заявили, что он наносит ущерб рабочим местам в угле и повышает тарифы на электроэнергию, в то время как сторонники говорят, что он поможет диверсифицировать государственный электроэнергетический сектор в то время, когда национальный рынок угля находится в упадке.

Западная Вирджиния вырабатывает больше электроэнергии, чем потребляет, и поставляет около половины своей энергии в другие среднеатлантические штаты через общую региональную сеть. (Экспорт не показан в приведенной выше таблице.)

Большая часть электроэнергии, производимой в Висконсине, производится из угля, но производство природного газа увеличилось за последние три года.Энергия ветра прочно обосновалась в штате десять лет назад и постепенно увеличивала свою долю в производстве электроэнергии.

Висконсин потребовал от своих коммунальных предприятий получать 10 процентов электроэнергии, продаваемой в штате, из возобновляемых источников к концу 2015 года. Эта цель была достигнута на два года раньше запланированного срока.

Подавляющее большинство электроэнергии, вырабатываемой в Вайоминге, вырабатывается из угля, но за последнее десятилетие ветроэнергетика получила широкое распространение.В прошлом году ветер обеспечивал почти десятую часть электроэнергии, производимой в штате.

Из-за своего небольшого населения Вайоминг производит гораздо больше энергии, чем потребляет, и отправляет около 60 процентов энергии в соседние штаты.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *