Глина с цементом использование: Можно ли цемент в бетоне заменить глиной?

Содержание

Глина в качестве добавки в смешанных цементных растворах

Применение глины в качестве добавки в смешанных цементных растворах наряду с диатомовыми землями и обычно применяемой известью. В первом приближении можно считать, что содержание глины по весу по отношению к цементу не должно превосходить 1:1 — 1,25 : 1. При большей величине добавки глины качество растворов в отношении их морозостойкости и коэфициента размягчения может значительно снизиться, почему в настоящее время еще нельзя судить о пригодности таких растворов для кирпичной кладки. Большое количество проведенных испытаний не выявило каких- либо отрицательных- свойств цементно-глиняных растворов, которые могли бы повлиять на суждение о возможности их применения. Наоборот, испытания доказали в известных пределах ценные качества цементно-глиняных растворов, не говоря уже о том, что в большинстве случаев стоимость их ниже аналогичных растворов на других добавках. Однако качество применяемой глины, повидимому, все же играет существенную роль, так как различные глины давали в наших опытах достаточно разные результаты.

В частности, глины с большим содержанием органических веществ давали растворы с наихудшими показателями. Наилучшие результаты в различных случаях испытаний и по различным характеристикам показали различные глины. Однако, в большинстве эти лучшие показатели относились к случаям введения в растворы кирпичных глин. Несмотря на значительное различие в химическом составе применяемых нами глин, какой-либо определенной зависимости между качеством получаемых растворов и химическим составом глин установить в настоящее время не удалось. Это должно, новидимому, составить предмет дальнейших исследований в этой области.

Однако уже теперь можно наметить некоторые пути к оценке качества глин и встречающихся в них соединений, могущих оказать отрицательное влияние на свойства цементно-глиняных растворов. Глины, вообще говоря, по своему минералогическому и химическому составу настолько разнообразны, это обстоятельство дает некоторым исследователям возможность утверждать о «наличия стольких же разновидностей глины, сколько месторождений подвергается обследованию» (Г.

Зальманг). Помимо этого, слоистый характер значительной части залеганий делает состав глины весьма пестрым даже и в одном и том же месторождении. Поэтому к выбору и применению глин в смешанных растворах следует относиться с очень большой осторожностью. К числу возможных примесей к глине, могущих оказать известное влияние на прочность и стойкость смешанного раствора во времени, следует отнести часто встречающиеся в них:
а) сульфиды — пирит и марказит;
б) органические вещества (растительные ткани, битуминозные вещества, углерод, гуминовые вещества, в частности, гумусовые кислоты;
в) некоторые легко растворимые соли в виде сульфатов железа (мелантерит), кальция (гипс), магния (эпсомит), калия и натрия, хлористый натрий и магний, растворимые силикаты щелочных и щелочно-земельных металлов, хлориды щелочных металлов.

Влияние пирита

Пирит в глине обычно встречается в виде зерен желтого цвета с металлическим блеском, кубиков и плоских розеток, видимых невооруженным глазом. Однако в так называемых квасцовых глинах пирит содержится и в мелкораспределенном состоянии, причем в этом случае он не может быть удален из глины даже путем отмучивания. По Райсу пирит можно встретить почти в каждом месторождении, но в глинах, залегающих у поверхности земли, его редко можно встретить в устойчивой форме, так как он на открытом воздухе быстро переходит в сульфат железа, а затем в лимонит (2Fe2Q3 3h3O), являющийся для смешанных растворов, по всем имеющимся данным, повидимому, безвредным.

Однако при разложении пирита и марказита освобождается серная кислота, образующая сульфаты с содержащимися в глине карбонатами кальция, магния или железа.
Надо отметить, что обычно глины, содержащие пирит или марказит, отбрасываются при производстве керамических изделий и идут в отвал. Во всяком случае глина ранее ее применения должна быть исследована на содержание в ней пирита.
Гуминовые кислоты являютея частью гуминовых веществ, растворимую в щелочах. По Свен-Одену можно вообще различать:

а) гумусовую кислоту, нерастворимую в воде, черно-бурого цвета;
б) торфяную, нерастворимую в воде, желто-бурого цвета,
в) фульво-кислоту, растворимую в воде, светложелтого цвета.

Гуминовые вещества, в свою очередь, делятся на гуминовые кислоты, гумины, которые растворяются в крепких щелочах лишь при долгом кипячении, и гумусовый уголь, вовсе нерастворимый в щелочах. Гуминовые кислоты при нагревании также переходят в нерастворимое в щелочах состояние. Химическое строение гуминовых кислот остается в общем недостаточно выясненным, однако считается доказанным присутствие в них группы СООН. Присутствие гуминовых кислот может быть оценено по показателю концентрации водородных ионов.

По данным проф. Швецова, можно вообще считать, что кислоты, содержащие только карбоксильную группу СООН, не оказывают особенно вредного действия на цементные растворы при добавлении их в воду затворения. Однако ввиду недостаточной выясненности химического строения гуминовых веществ и кислот вопрос о характере и степени возможного их влияния должен еще составить предмет планомерных исследований.

Отсутствие понижения прочности при затворении портландцемента на болотной воде, содержащей гуминовые вещества и, в частности, гуминовую кислоту, наблюдалось рядом исследователей. Д. Абрамс в 1924 году опубликовал результаты опытов по изучению прочности портландцементных растворов (в сроки от 90 дней до 2 1/2 лет), на основании которых можно установить отсутствие существенного понижения прочности растворов, затворенных на болотной воде.
Инженер Сперанский рядом экспериментов с естественными и искусственными водами, содержащими гуминовые вещества, также показал возможность использования их для затворения цементных растворов. В этих опытах исследуемых торфяниковых вод колебался от 4,6 до 6,3, окисляемость же находилась в пределах от 11 до 50 мг кислорода на литр воды. В глинах же, по данным Зальманга, содержание гуминовых веществ обычно находится в пределах 0—0,5% при pH от 7,1 до 4,8; лишь в особо загрязненных глинах, отличающихся по большей части темносерым или коричнево-черным цветом, содержание гуминовых веществ доходит до 2—2,5% при значении pH от 6 до 7.


В вышеуказанных опытах инж. Сперанского наблюдалось (в сроки до 90 дней) даже некоторое повышение прочности на сжатие образцов, затворенных на загрязненной воде, по сравнению с образцами, затворенными на дистиллированной воде (при хранении всех образцов в обычной чистой воде). Отсутствие серьезного влияния гуминовых веществ, введенных при затворении портландцемента, на прочность растворов можно объяснить наличием подавляющей массы цемента по сравнению с количеством вводимых и нейтрализуемых цементом реагентов.

Некоторое же наблюдаемое повышение прочности, применительно к общим данным проф. Б.Г. Скрамгаева и Г.К. Дементьева, может быгь объяснено некоторым повышением эффективности гидратации от действия кислот.
Таким образом можно считать, что гуминовые вещества и кислоты в случае нахождения их в воде затворения вряд ли должны оказывать серьезное отрицательное влияние на прочность строительных растворов для кладки. Все же в опытах глины с органическими примесями показывали наихудшие результаты и склонность к некоторому падению прочности в дальние сроки твердения.


Однако для глин с большим содержанием органических веществ нижеприводимые опыты Mache позволяют найти меры, способствующие уменьшению или устранению опасности от введения глин, содержащих в себе перегной.

В своих опытах Mache исследовал влияние введения чернозема, содержащего перегной, на прочность пластичных цементных растворов. Содержание перегноя в черноземе, определенное по методу М. Pietre, составляло 11,7%.

Рассматривая с этой точки зрения влияние присутствия перегноя, возможно думать, что и растворы с глинами, содержащими органические вещества, можно обезопасить от влияния последних путем введения дополнительной щелочи, в частности извести. Отсюда следует предположить, что трехкомпонентные растворы, предложенные проф. В.П. Некрасовым (цемент-известь-трепел или цемент-известь- глина), в некоторых случаях (введение небольших количеств извести при применении сырой глины и сырого трепела) с этой точки зрения смогут дать более высокие показатели прочности, нежели двухкомпонентные цементно-смешанные растворы.

Наряду с гуминовыми веществами в глине могут встречаться органические вещества и в других формах: а) в виде растительных тканей (листья, стебли, корни, куски древесных стволов), которые легко могут быть изъяты из глины при ее подготовке; б) в виде органических веществ битуминозного характера, влияние которых на качество цементного раствора может считаться вредным лишь в редких (например, в весьма вредной форме бурого угля) случаях;

в) в виде твердого углерода в модификациях, сходных с антрацитом, что не должно считаться вредным.

Так как значительное содержание подобного рода органических веществ характеризуется сероватой, синевато-серой и черной окраской глины, а иногда и видимыми вкраплениями, то необходимо воздерживаться от применения подобных глин для строительных растворов. Глины же иного цвета было бы желательно проверять на содержание в них органических веществ и устанавливать степень кислотности путем определения показателя pH (впредь до разработки и проверки более простых приемов исследования).

Надо отметить, что прокаливанием глины при температуре красного каления или длительным нагреванием при температуре около 250° (например при сушке перед помолом) можно освободиться от значительной части органических веществ.

В связи с этим стедует отметить, что, повидимому, применение глин, активизированных путем прокаливания, как это предлагалось вышеупомянутой инструкцией В.П. Некрасова (1933 г.), может быть уместным и выгодным в целом ряде случаев.
Наиболее опасными для цементно-глиняных растворов примесями в глине могут явиться, помимо органических веществ, легко растворимые соли. Органические вещества могут непосредственно вызывать некоторое понижение прочности раствора, наличие же растворимых coелей может проявляться с течением времени и привести к последующему выветриванию раствора в силу явлений миграции солей. Под выпетриваннем строительных материалов обычно понимается потеря ими прочности и частичное или полное разрушение под влиянием атмосферных и других факторов. Явления выветривания строительных растворов вообще в той или иной степени встречаются сравнительно часто, причем основные причины такого выветривания могут быть разбиты на две важнейших категории:

1) Плохое смешивание раствора, ведущее к (наличию ослабленных участков, выветривающихся под влиянием, главным образом, действия мороза; при плохом перемешивании раствора не может быть осуществлено надежное и полное сцепление элементов кладки. При отсутствии же должного сцепления легко возникают трещины и повреждения в кирпичной стене даже от незначительных осадков фундамента. Эти трещины и являются очагами распространения явлений выветривания под влиянием последующего попадания воды в подобные трещины и замерзания их.

2) Выветривание в силу химических и физических влияний имеет место, в частности, при наличии в компонентах растворов сульфатов, карбонатов и хлоридов. Из вышеуказанных возможных растворимых солей в отношении явления выветривания наиболее безвредным является карбонат кальция, а затем сульфат кальция и сульфат калия. Наиболее же опасными солями (в этом отношении явлются сульфаты натрия, например, глауберовая саль (Na2SQ4 . 10Н2О), и сульфаты магния. Последняя соль особенно опасна в соединении с сульфатом калия, так как получающаяся тройная соль (K2S04 . MgS04 . 6Н2О) содержит значительное количество воды и кристаллизуется с значительным увеличением объема, еще большим, чем при кристаллизации сульфатов натрия.

В глине из сульфатов чаще всего встречается гипс, причем по данным Dawit и ряда других исследователей. содержание солей серной кислоты в глинах сильно колеблется и может быть довольно значительным. Например, по данным Nirsch. содержание SO3, в глине одного и того же месторождения колебалось от 0,016 до 0,271 %. Нужно, впрочем, отметить, что нередко и в обожженном кирпиче содержание SO3 доходит до 0,2—0,3%, что объясняется применением иногда для обжига угля со значительным содержанием соединений серы. Особенно часто высокое содержание S03 имеет место в сравнительно слабо обожженных сортах кирпича.
Таким образом выветривание кладки под влиянием сульфатов может иметь место также и вследствие наличия их в штучных элементах кладки.
Наряду с этим нужно отметить, что и в затвердевшем цементе, употребляемом для кладки, также может находиться ряд соединений, способствующих появлению выцветов. Разрушение раствора в швах кладки от явлений выцветания в общем происходит нижеследующим образом: влага, введенная в стену вместе с раствором, растворяет имеющиеся в наличии растворимые соли. По мере высыхания кладки с поверхности происходит движение растворимых солей по направлению к наружным поверхностям стены. В дальнейшем растворимые соли подходят к поверхности стены, где кристаллизуются в порах раствора и на поверхности. Так как эта кристаллизация происходит для значительной части растворимых солей с большим увеличением объема, то такая кристаллизация ведет к постепенному разрушению шва с поверхности, к отпаду штукатурки, частичному выкрашиванию кирпича, появлению ясно видимых налетов и т. п.

Явления выветривания особенно усиливаются при неизбежных колебаниях влажности, так как при изменении влажности среды большинство вышеуказанных солей то теряет, то вновь присоединяет кристаллизационную воду, меняя при этом объем и вызывая серьезные внутренние напряжения в теле раствора.
Простейшие исследования глины на содержание в ней соединений, способных (произвести выцветы на кладке, можно произвести нижеследующим способом: берется стеклянный цилиндр (или, что лучше, колба с узким горлышком) и наполняется дестиллированной водой; на верхнее отверстие цилиндра или колбы плотно укладывается притертый кирпич; после этого цилиндр переворачивается таким образом, чтобы дестиллированная вода проникла в кирпич. В дальнейшем кирпич просушивается, причем в случае наличия в нем растворимых солей таковые выступают в виде беловатого налета. Для целей испытания глины предварительно должен быть отобран кирпич, не имеющий такого налета. Далее испытуемая глина просушивается, размельчается и затворяется большим количеством дестиллированной воды. Полученное жидкое глиняное молоко выливается иа кирпич, предварительное испытание которого показало отсутствие в нем растворимых солей. В том случае, если в глине находятся растворимые соли, таковые проникают в кирпич и по просушивании выступят на его поверхности в виде беловатого налета. Наличие растворимых солей в глине можно оценить также с помощью выпаривания остатка из воды, отфильтрованной от глины. Наличие осадка укажет на наличие растворимых солей.

Из прочих примесей, встречающихся в глине, кроме вышеуказанных, большинство возможно даже признать полезным. К числу (подобных примесей относятся: кварц в виде тонких частиц и зерен обычного песка, кремнезем в амофорном состоянии (встречающийся обычно в глине лишь в очень небольших количествах), гидраты кремнезема, слюды, гидрослюды.
Влияние слюды оценивалось профессором Пономаревым, который при своих исследованиях системы цемент-слюда отмечал, что небольшие добавки измельченной слюды (в количестве 2 — 3%) не оказывают существенного влияния на прочность раствора, но повышают довольно резко связность получаемой массы.

Более значительные добавки слюды довольно серьезно понижали величины временного сопротивления растяжению и изгибу испытуемых образцов. Ожидать какого-либо вредного химического влияния слюды на вяжущую часть раствора нет оснований, если принять во внимание чрезвычайно высокую степень химической инертности слюд вообще. Наиболее опасным действием значительного количества слюды может явиться, как показывают исследования G.Kathrein, понижение морозостойкости раствора.

Так как глинах содержание слюды в огромном большинстве случаев весьма невысоко, то ожидать с этой стороны вредного влияния глины на смешанные цементно-глиняные растворы нет оснований. Гидраты глинозема, кремнезема и Окиси железа, иногда присутствующие в глинах в незначительном количестве, могут, по данным Rodt, оказать весьма благоприятное влияние на свойства раствора и, в частности, на его (прочность в дальние сроки твердения, связанного с высыханием.

Исследования, произведенные Михаэлисом над гелеобразными гидратами окиси кальция, глинозема, кремнезема и гидратом окиси железа, подвергнутыми высушиванию с целью частичного обезвоживания, показали возможность получения агрегатов весьма высокой прочности, особенно из гелей гидратов кремнезема и окиси железа. Влияние постоянно встречающейся в глинах окиси железа можно оценить и по опытам Грюна. По этим опытам введение 30% молотой окиси железа (считая от веса цемента) в цементно-песчаные растворы 1 : 3 дает даже некоторое повышение прочности растворов на растяжение при весьма незначительных изменениях прочности на сжатие (10%). Таким образом влияние этой составляющей глины не может быть признано вредным.

Содержащиеся в глинах тонкая пыль и тонкий песок по этим же испытаниям Грюна, а также по ряду других исследований оказывают также скорее положительное, чем отрицательное действие «а плотность и прочность цементных растворов, особенно в длительные сроки твердения. Однако, надо отметить, что это будет иметь место, понятно, не при всяких количествах введенной добавки, а лишь в тех случаях, когда гранулометрический состав строительного раствора будет находиться в определенных пределах. (Кроме того надо подчеркнуть, что по вышеприведенным исследованиям Ферэ добавление тонких песчаных частиц несравненно более повышает сопротивление строительных растворов растяжению и величину сцепления, чем сопротивление сжатию. Это указывает, что вообще добавка мелких частиц способна оказывать достаточно благоприятное влияние на качества раствора в кладке, но что назначение величины добавки шины должно производиться с полным учетом получаемого гранулометрического состава строительного раствора. Гидрослюды, присутствующие всегда в глинах, (гидроокись железа, присутствующие в некоторых глинах кальцит, доломит, глауконит, полевые шпаты являются, повидимому, безвредными отощающими примесями.

В общем, при применении глин в смешанных растворах, с большинством из этих примесей приходится считаться, как с (грубозернистыми примесями, частично заменяющими собой песок в строительных растворах. При подобном подходе сильно песчанистые глины должны «водиться в строительные растворы с обязательным учетом содержания в них крупнозернистых включений, т. е. с соответствующим увеличением дозировки такой песчанистой глины и с уменьшением количества вводимого песка.

Как видно из вышеприведенного беглого перечня, наибольшее внимание при выборе глин должно быть обращено, повидимому, на содержание в них растворимых солей и, в частности, сульфатов. Опыты, проведенные в Промакадемии имени тов. Сталина по применению сильно засоленных лессов, показали, что наличие в строительном растворе значительного количества растворимых солей приводит к появлению чрезвычайно сильно развитых выцветов на поверхности образцов, сопровождающихся размягчением и разрыхлением наружной их корки. В этом отношении особенно неприятными оказались сернокислые соли натрия, магния и калия. Так как растворимые соли легко могут оказать вредное влияние на раствор и кладку (явление эффлоресценции — появление выцветов), то глину, содержащую значительное количество таких солей можно использовать лишь после длительного ее вылеживания, способствующего выщелачиванию сульфатов или после обработки ее бариевыми соединениями.

Однако и тот и другой приемы могут дать эффект лишь в случае относительно невысокого содержания в глине растворимых солей и вдобавок лишь по отношению к некоторым из них. Опасность непосредственного влияния сульфатов на портландцемент в смешанном растворе несколько, повидимому, снижается как вследствие предполагаемого действия глины, аналогичного действию слабых пидравшических (добавок, так и особенно в случаях применения растворов для кладки, находящейся в воздушных условиях. Так как пирит, а также гипс и другие сульфаты являются нежелательными примесями к глине и при производстве из нее кирпича, то всякая кирпичная тайна обычно подвергается оценке с точки зрения наличия или отсутствия в ней подобных вредных минеральных примесей, почему данные и подобных испытаний могут быть использован и при выборе глин для растворов.

глиняная штукатурка своими руками, приготовление песчано глиняного раствора для стен, пропорции смеси из песка, цемента и опилок

Несмотря на огромную ассортиментную линейку строительных смесей, материалы, проверенные временем, востребованы всегда. Глиняная штукатурка имеет тысячелетнюю историю, и зарекомендовала себя только с лучшей стороны. Существует богатая рецептура растворов, замешанных на глине, выбор компонентов зависит от условий эксплуатации отделки.

В статье мы расскажем о разновидностях смесей, как сделать раствор с глиной для штукатурки, и приведем несколько полезных советов мастеров, как избежать трещин и осыпаний.

Глиняная штукатурка – состав и рецептура

Существует множество составов глиняной штукатурки, но универсального рецепта не существует, качество состава зависит от компонентов. И главный из них – глина для штукатурки стен, ее разделяют на 2 вида: легкая и жирная, последняя наиболее пригодна.

Чтобы проверить качество, следует из глины скатать шарик небольшого диаметра, положить на ровную поверхность и сплющить. Если края остались целые, то материал подходит для штукатурки, пошли трещины — состав малопригоден. Другой тест – скатать жгутик длиной 200-300 мм, сечением 10-20 мм и аккуратно согнуть его, у качественного материала края не растрескиваются.

Способы проверить качество материала

Таблица рецептов, пропорции в частях:

ГлинаГипсПесокЦементОпилки, волокноИзвестьАсбест
311  21/5
4 21 11/25
1 2  11/10
1 3    
1 3 0,5-1  

Для штукатурки печей следует использовать шамотную глину 1ч. :2 ч. песка:1ч. цемента.

Ввиду того, что рецептов очень много, разберем характеристики наиболее востребованных:

  • Песчано-глиняный раствор для штукатурки стен – используется для финишной отделки, обладает высокой теплопроводностью, поэтому не пригоден для основного слоя.
  • Для улучшения теплоизоляционных характеристик в раствор из глины и песка добавляют мелкорубленную солому либо опилки, в современном варианте – синтетические волокна (фибру).
  • Штукатурка глиной с опилками, без песка. Состав быстро высыхает, теряет эластичность, сложен в работе, но отделка очень прочная и долговечная.

[su_label type=»success»]Совет:[/su_label] [su_highlight background=»#e5fec3″]Для увеличения эластичности глиняной штукатурки рекомендуется добавлять кизяк, пшеничную муку. Для улучшения теплоизоляции – мелкорубленная солома, волокна камыша, конопли, шерсть, рогоз.[/su_highlight]

Для гладкого финишного слоя подходит глиняно-песчаная смесь

Как замешивать раствор

Чтобы глиняная штукатурка не потеряла своих качеств, готовить ее необходимо по строгим правилам:

  • Глину размельчают, помещают в емкость, заливают водой, оставляют на сутки.
  • Перетирают через строительное сито, ячейка не более 3*3 мм.
  • Смешивают с песком и добавляют другие сухие компоненты, состав хорошо вымешивают, чтобы он легко отходил от рук.
  • Добавляют измельченную фибру, солому, опилки и т.д. Чем мельче фракции, тем проще положить штукатурку на стены, слой будет более гладким.
  • Развести водой до нужной консистенции (густая сметана).
Правильная консистенция материала

Полезные советы или как избежать дефектов и растрескиваний

Чтобы отделка была надежной и прослужила долгое время, сохраняя эстетику, перед глиняной штукатуркой поверхности необходимо хорошо зачистить от слабых слоев старой отделки, удалить пыль, жирные пятна. Нанести грунт.

Как избежать трещин при штукатурке глиненым раствором

Перед работами хорошо смочить поверхности. Основное правило – подобрать глину хорошего качества, грамотно приготовить раствор. Укрепить поверхности армирующей сеткой или дранкой (тонкие рейки, набитые по диагонали крест на крест), для тонких слоев – джутовая или льняная мешковина. Наносить глиняную штукатурку лучше в 2 слоя: первый толстый – глина-песок-солома, второй – финишный, глина-цемент-песок-известь, чтобы добиться гладкой поверхности.

Дранка выполняет две функции – обрешетка для утеплителя и армирующая сетка для отделки

Штукатурка деревянного дома внутри глиной – секреты мастеров

Штукатурка деревянных стен внутри дома глиной начинается с тщательной заделки стыков паклей, это создаст дополнительный теплоизоляционный слой и поможет уменьшить расход смеси. Деревянные стены следует обработать антисептиком, далее гидроизоляция – на стены набивается рубероид, стыки внахлест 100 мм. После чего делается обрешетка и наносится штукатурка деревянного дома глиной.

[su_label type=»warning»]Важно:[/su_label] [su_highlight background=»#fdffcd»]Для деревянных домов армирующую сетку из металла использовать не рекомендуется. Дерево и глина – микрофобные материалы, а влажность приведет к коррозии металла и порче отделки.[/su_highlight]

Это экологичный, практичный и недорогой способ отделки, но не смотря на явное преимущество и недостатки глиняной штукатурки брусового дома тоже существуют: дерево работает под воздействием дельты температуры и влажности, со временем неизбежны на поверхности мелкие трещины. Но и их можно обернуть в достоинства, превратив в ультрамодный кракелюр.

Текстура отделки смесью с добавлением опилок

Дизайн

Глина – почти универсальный материал, благодаря добавкам и колеру, можно добиться различных оттенков материала: белый, терракот, серый, бежевый и пр. Кроме того, раствор можно наносить разными техниками по принципу декоративной штукатурки. Здесь главное – проявить свою фантазию, и в результате вы получите не просто прочную, но и красивую отделку.

[su_youtube url=»https://www.youtube.com/watch?v=1Mzy9FCFuaM»]http://www.youtube.com/watch?feature=player_embedded&v=_nByy_iHq4I[/su_youtube]

Строительный раствор. Состав цемента

Строительные растворы

Строительный раствор могут быть известковыми, глиняными, глиняно-известковыми, известково-гипсолвыми и глиняно-цементными. Прежде чем добавить глину в раствор, её нужно предварительно размягчить и пропустить через густое сито.

Строительный раствор должен быть абсолютно однородным, чтобы в нём нельзя было различить отдельных ингредиентов. Это достигается путём продолжительного размешивания соответствующим инструментом. Исключительно важным для строительного раствора является количественное соотношение компонентов. Оно зависит от назначения раствора (кладка, штукатурка, заделка трещин и т.д.).

При большем количестве связующего вещества растворы получаются жирными. Штукатурка из такого раствора при высыхании растрескивается.
При избытке наполнителя (песка) получаются постные растворы, дающие слабую, непрочную штукатурку.

Если при смешивании раствор сильно прилипает к инструменту — он жирный, если не прилипает — постный, нормальный раствор должен слегка прилипать к инструменту.

Приготовление известкового раствора

Приготовление известкового раствора выполняют так: песок равномерным слоем насыпают на прочную основу и покрывают необходимым количеством извести. Смесь несколько раз перелопачивают, затем тщательно перемешивают мотыгой. Посредине делают кратер, в который заливают воду. Смесь снова размешивают таким образом, чтобы кратер постепенно наполнялся смесью, а его края постоянно находились выше раствора для избежания перелива. Готовый раствор должен представлять собой достаточно густую однородную смесь.

Приготовление глиняного раствора

Глиняный раствор можно использовать и для кладки и для штукатурки лишь во вспомогательных и второстепенных постройках. Такой раствор готовят, как известковый, но он слабее известкового. Для увеличения прочности в глиняный раствор добавляют гашеную известь, гипс или цемент.Для глиняно-известкового раствора на одну часть глины берут 0,3…0,4 части гашеной извести и 3…6 частей песка. Количество песка определяется назначением раствора (кладка, штукатурка) Для приготовления глиняно-гипсового раствора на одну часть глины берут 0,25 части гипса и 3…5 частей песка, Для глиняно-цементного раствора — на одну часть глины — 0,15. ..0,2 части цемента и 3…5 частей песка.

Состав цемента

Цемент — главный материал для строительства. В состав цемента входит смесь из известняка и глины. Смесь подвергают спеканию и спеченную массу размалывают и получают порошок серого цвета, состоящий из CaO, Al2O3 и SiO2. Если эту смесь смешать с водой в тесто, то через некоторое время эта масса затвердевает. При добавлении в цемент песка и щебня получают бетон. Если внутри бетонных изделий находится арматура — каркас из железных прутьев или сетки, получается очень прочный материал — железобетон.

В отличии от других связующих материалов (извести, гипса, песка, жидкого стекла), после смешивания с водой и предварительно затвердевания на воздухе может продолжать твердеть, а в твёрдом состоянии он устойчив к воде. Для получения цементного теста необходимо 24…28% воды. Отклонение как в сторону уменьшения, так и в сторону увеличения снижают его качество.

Схватывание цементного раствора происходит через час после его смешивания с водой и прекращается, когда твердёющая масса теряет свою пластичность — обычно через 12 ч. Чем выше температура воздуха, тем быстрее происходит схватывание цемента. Поэтому летом цемент затвердевает быстрее. Процесс можно ускорить с помощью различных добавок.

Как разрушить затвердевший цемент.

Затвердевший цемент (цементный камень) разрушается мягкой водой, содержащей угольную кислоту, кислыми водами (сбросами промышленного производства), водой, содержащей сульфаты и хлориды (морская вода).

Приготовление цементного раствора

Из необходимого количества песка насыпают кучку, затем добавляют цемент и перелопачивают до образования однородной смеси. Её раскладывают толстым слоем и заливают необходимым количеством воды, затем размешивают до получения однородного раствора, который следует использовать в течение следующего часа!

Цементный раствор при соотношении цемента и песка 1:4 или 1:5 — раствор трудно наносится на стену и не прилипает. Для этой цели используются обогащённые цементные растворы (1:2 или 1:3). Качественные эластичные растворы получают из цемента, извести и песка. Для приготовления такого раствора сухой цемент смешивают с песком. Гашеную известь разводят до вязкости сметаны и засыпают в неё смесь цемента и песка, после чего хорошо размешивают до образования однородной массы.

Приготовление бетонной смеси

Важным условием приготовления бетонной смеси — это хорошее смешивание компонентов раствора — цемента, песка и воды. Поэтому бетонную смесь лучше готовить в бетономешалке. В малых количествах бетонную смесь вручную. Щебёнку насыпают на твёрдое основание кучкой высотой 10…15 см, равномерно покрывают цементом и перелопачивают до получения сухой однородной смеси. Затем снова образуют кучку с кратером, в котором при постоянном перемешивании добавляют воду до получения достаточной густой смеси. Нормы расхода цемента, песка следующие:

  • — для 1 м2 бетона толщиной 5 см — 13,6 кг цемента и 6 ведёр песка
  • — для 1 м2 бетона толщиной 8 см — 21,8 кг цемента и 9 ведёр песка
  • — для 1 м2 цементной замазки толщиной 2 см — 11,3 кг цемента и 2 ведёр песка
  • — для 1 м2 цементной замазки толщиной 3 см — 16,5 кг цемента и 3 ведёр песка

Количество заливаемой воды зависит от влажности и вида песка. Для приготовления 1 м3 бетона расходуется приблизительно 200…250 л воды. Объёмное соотношение песка и щебня также зависит от вида песка. Для натурального песка — 0,6:1 — 0,8:1, для керамзитового — 0,8:1 — 1:1, для перлитового — 0,6:1.

Для правильного затвердевания бетонной смеси после заливки в начальный период «схватывания» необходимо предохранить его от быстрого высыхания, ударов, сотрясений, механических воздействий и холода.

Поддержание бетона во влажном состоянии во время схватывания является важным условием достижения проектной прочности. Поверхность начинают обливать водой сразу же после установления, что она не повреждается водой (через 24 ч после заливки бетона).
При температуре выше +50C поверхность поливают в течение 7 дней, ниже +50C — не поливают, а принимают меры против высыхания бетона, закрывая его увлажнённым материалом (песком, полотном и т.д.) или свеже залитый бетон покрывают водонепроницаемым покровом. Прочность растворов, приготовленных из шламов обогатительных фабрик, выше, чем растворов из карьерного песка.

Цементно-глиняно-известковый раствор. Состав, характеристики

При больших объёмах кладки и штукатурке стен, мы используем самодельные цементно-известковые и цементо-глиняно-известковые растворы. Это помогает нам экономить на материалах 2-3 раза в сравнении если покупать готовые смеси в мешках. При этом качество сделанной работы остаётся высокое.

К тому же такие растворы универсальны. Их можно использовать для штукатурки: бетонных, кирпичных, деревянных стен внутри помещений и фасадов с цоколем. И как раствор для кладки кирпича. А рецепт раствора можно изменить для любого случая.

Самодельные штукатурки или кладочные смеси применяем, когда их нужно тоннами. Лишь тогда удобство от работы отходит на второй план и начинается выгода.

Иначе лучше взять недорогую смесь от Antega, Форвард, Реал, Полигран, Миксити или Микс Мастер. Так дороже, чем делать самому, но цена компенсируется предсказуемым результатом, удобством и скоростью работы.

В статье рассмотрим свойства цемента, извести с глиной и их роль в растворе. Также приведём примеры рецептов приготовления смесей.

 

Известь и известковые растворы

Несмотря на то что известь веками была основой в кирпичной кладке, побелке и штукатурке стен; сегодня к ней почти пропал интерес. И причин тому много:

Цена у извести в последнее время выше чем у цемента или гипса.

Медленное твердение. Известь (пушонка) — это воздушное вяжущее, как и гипс. Так, погрузив известь в воду она размокнет, но твердеть не будет. Поэтому мешки с известково-песчаной смесью могут месяцами лежать на улице под открытым небом и с ними ничего не станется. Такой раствор станет твёрдым только когда из него испариться вода. Это значит, что с известковыми стенами продолжают работать только после их полного высыхания.

Выделяют 2 вида твердения воздушной строительной извести: 1) карбонатное твердение; 2) гидратное твердение.

Карбонатное твердение заключается в 2-х параллельно протекающих процессах (по времени): а) испарении воды из раствора и кристаллизация извести. Кристаллы гидроксида кальция соединяются между собой, образуя «сросток», который является основой прочности камня; б) карбонизации за счет углекислоты из воздуха. Карбонизация дает дополнительный прирост прочности, так как карбонат кальция – малорастворимое в воде вещество. Правда процесс твердения идет очень медленно, потому что структура из кристаллов гидроксида кальция – малопрочная, а карбонизация недостаточно эффективна из-за малой концентрации углекислого газа в атмосфере.

Гидратное твердением — в результате замешивания извести водой, происходит её постепенное превращение в камневидное тело (гидроксида кальция).

Трудоёмкость нанесения. Хоть известковый раствор обладает пластифицирующими свойствами, всё же его тяжело наносить в сравнении с гипсовыми штукатурками или растворами сделанных на заводе с добавлением пластификаторов. При нанесении в качестве штукатурки, большая его часть стекает на пол. И всё что падает приходится собирать обратно в вёдра, заново перемешивать добавляя воду.

Большое трещинообразование и усадка. Это объясняется тем, что при испарении воды уплотняется известковый раствор. Из-за этого в нем образуются сетка пор и тончайшие капилляры, частично заполненные водой. В этих порах и капиллярах возникают силы капиллярного давления, стягивающие частички вяжущего вещества и заполнителей. И чем выше содержание воды в растворе, тем больше его усадка при высыхании во время твердения.

Объёмное изменение из-за частиц пережога. В негашеной извести всегда присутствуют пережженные частицы СаО и MgO, которые гидратируются, увеличиваясь в объеме в уже затвердевшем известковом камне. Неравномерные изменения объема и возникающие при этом напряжения вызывают растрескивание растворов, бетонов и изделий из них, деформацию кладки. Чтобы избежать подобного, лучше покупать известь гашенную в заводских условиях. Там её тонко измельчают, а при гашении применяют машины-гидраторы.

Низкая прочность. После месяца твердения извести, её прочность достигает порядка 0,5-1 МПа (5-10 кг/см²). И только через годы, благодаря карбонизации за счет углекислоты из воздуха прочность достигает 5–7 МПа (50-70 кг/см²). Эти показатели не соответствует современным стандартам строительства.

Размокает. Известковая гарцовка подходит только для внутренних работ в сухих помещениях. Такую штукатурку на фасаде здания смоет дождём, как побелку с дерева.

Не подходит под современные отделочные материалы. Выпускаемые штукатурки, шпаклёвки и клей прочнее чем известка. Из-за этого есть вероятность испортить работу и материалы, которые не будут держаться на известковой поверхности. Т. к. не будет соблюдено правило: предыдущий слой должен быть прочнее следующего. К тому же напомним, что известь воздушное вяжущее, а цемент- гидравлическое. От этого на стене оштукатуренной известковой гарцовкой не будет держаться даже кафельная плитка.

Известь — это щелочь. Поэтому при работе с известковыми растворами необходимо надевать перчатки, респиратор и очки.

 

Известко-песчаная смесь фасованная в мешки по 50 кг. производства Павлово-на-Неве

 

Недостаткам извести, есть что противопоставить:

Препятствует образованию плесени и грибка, потому что опять же известь — это щелочь. Эту способность используют даже в борьбе с вредителями в скотоводстве и садоводстве. Обрабатывают стволы деревьев известковым молоком, белят стены в местах содержания животных.

Высокая диффузионная и капиллярная паропроницаемость. Эти свойства извести помогают распределить влагу в стене, избегая локальных переувлажнений. Так, в доме где наружные кирпичные стены положены и оштукатурены известковым раствором остаются сухими (нет точки росы) а значит остаются тёплыми. Эти же свойства формируют правильный домашний микроклимат. Излишки влаги из воздуха такие стены забирают, а при её недостатке возвращают обратно. К тому же влага возвращается чистой, потому что известь служит природным фильтром.

Имеет свойства пластификатора.  Тонкодисперсные частички гашеной извести, адсорбционно (поглощают) удерживают на своей поверхности значительное количество воды, создавая своеобразную смазку для зерен заполнителей в растворной или бетонной смеси, уменьшая трение между частицами. Так, для изготовления известковых кладочных растворов на 1 м³ обычно расходуется 300—500 л. воды и более. Вследствие этого известковые растворы обладают высокой удобообрабатываемостью, легко и равномерно распределяются тонким слоем на поверхности кирпича или бетона, хорошо сцепляются (хорошая адгезия) с ними, отличаются водоудерживающей способностью даже при нанесении на кирпичные и другие пористые основания. Все это благоприятно отражается на производительности труда при кладочных и штукатурных работах, на их качестве, а также на долговечности кладки и штукатурки. Это свойство сохраняет подвижность раствора и позволяет без ущерба прочности скорректировать штукатурку или положенный кирпич в первые минуты.

 

Правила работы с известью

Минимальный слой нанесения известковой штукатурки 15 мм. Когда штукатурный слой больше 30 мм, тогда используют штукатурную сетку из оцинкованной стали, пластиковую или стеклопластиковую.

Известковую гарцовку используют в помещениях с влажностью не выше 60%.

Если вы решили штукатурить гладкие бетонные стены, то их нужно обить сеткой. Первый слой — грунтовочный обрызг, содержащий избыточное количество воды. Такой раствор хорошо заполняет все неровности поверхности, а вода впитывается основанием.

И не ленитесь надевать перчатки, респиратор и очки.

 

Состав известкового штукатурного раствора

Соотношение песка и гашёной извести для штукатурки стен 5-6 частей песка к 1 части извести.

Известь как самостоятельный вяжущий материал потерял актуальность, теперь её используют как пластификатор раствора. А на её место пришли гипс и цемент. Так при ремонте в доме, мастера стены штукатурят гипсовыми штукатурками, потому что они в сравнении с известковым раствором технологичнее:

  • прочность на сжатие у гипса 2,5-3 МПа, против 0,5-1,5 МПа у пушенки;
  • гипсовая штукатурка затвердевает за 2-4 часа, а у известки процесс твердения проходит месяцами и годами;
  • гипс наносится за один раз, даже слоем в 4-5 см. , известковую же гарцовку таким слоем удастся нанести в 5-6 приемов. Гипсовой штукатуркой удобно работать, она: не стекает с поверхности, легко тянется и ровняется правилом.
  • гипс инертный материал, поэтому такие штукатурки безопасны для здоровья мастера и не раздражают кожу и слизистую.

 

Цементная и цементно-известковая смесь

Цемент же лишен недостатков извести, поэтому он полностью заменил её. Он обладает уникальными свойствами, которые открыли новые возможности в строительстве.

Так обычные цементные растворы начинают схватываться уже через 45 минут после затворения водой. А через 12 часов, к примеру по цементной штукатурке можно проводить следующий этап работ. У цемента еще много неоспоримых достоинств, он: водостойкий и гидрофобный, прочный. И эти свойства постоянно совершенствуются наукой. Всё это важно для строительства ограждающих конструкций зданий и сооружений, но вот для штукатурки или для кладки кирпича некоторые свойства избыточны.

Так избыток прочности цементного раствора приведет к тому, что штукатурка отойдёт от кирпича, а кладка станет слабее. Произойдёт это из-за того, что кирпич не выдержит усадочное напряжение бетонного раствора (цемент «сильнее» кирпича).

«Смягчить» и придать новые свойства цементу помогает добавление извести в раствор. Тем самым устранив еще и недостатки пушенки.

 

 

Заменяя в растворе часть цемента на известь у раствора:

  • повышается адгезия (сцепление) со строительными материалами: бетоном, кирпичом, газобетоном, деревом, шлакобетоном, арболитом или опилкобетоном, керамической плиткой. Потому что известь способна в себе удерживать большее количество воды чем цемент, о чём писали выше. Так прочность сцепления у цементно-песчаной смеси М150 или М300 = 0.5 кг/см². А у цементно-известково-песчаной смеси уже 0.7-1.0 кг/см².
  • паропроницаемость стен — для хорошего климата и теплых стен в доме. Это свойство раствору также придаёт известь благодаря своим диффузионной и капиллярной паропроницаемости. Цемент же напротив гидроизолятор и влагу не пропускает.
  • атмосферостойкость (перепад температуры, солнце) и водостойкость — универсальность применения как внутри так и снаружи здания: цоколи, карнизы и другие конструктивные элементы зданий и сооружений, подвергающихся систематическому увлажнению.
  • возможность нанесения толстых слоев штукатурки;
  • бактерицидные свойства.

 

Глина в цементно-известковом растворе

Малая прочность и высокая стоимость извести, делают это вяжущее весьма невыгодным. Поэтому, в случаях когда основным назначением извести является роль пластификатора, как это имеет место в цементно-известковых растворах и самостоятельная прочность извести фактически не используется, то её можно заменить полностью или частично глиной.

Глина и любые другие примеси не допустимы в бетоне и железобетоне, которые идут для строительства фундамента, междуэтажных перекрытий и в других местах ответственного строительства. Так как они ухудшают прочность бетона. А вот при кладке кирпича или при штукатурке стен из него, прочностью можно пожертвовать. Добавление сырцовой глины в таких случаях придаёт более важные свойства цементно-песчаному раствору, это:

  • Водоудерживающая способность цементно-глиняных растворов выше даже чем у цементно-известковых растворов. Т. е. смесь с добавлением глины становится еще более пластичнее и удобоукладываемой. Особенно, водопотеря различается в первые 20 минут.
  • Повышает показатели прочности в сравнении с известью. Если принять за единицу прочность кладки на цементно-известковых растворах, то прочность кладки на соответствующих цементно-глиняных растворах составит от 1,10 до 1,18, (т. е. при одинаковых по объему составах растворов наиболее высокую прочность как раствора, так и кладки даёт цементно-глиняный раствор.
  • Прочность сцепления c сухим красным кирпичом в 10 раз выше чем у цементно-известковых растворов (1 цем.: 1 изв.: 9 песка). Который сам по себе бесспорно выигрывает у цементно-песчаной смеси. Это свойство вытекает также из повышенной водоудерживающей способности глиняных растворов. А вот составы из цемента, глины, извести и песка в полтора — два раза показывают худшие результаты.
  • Цена на глину в сравнении с известью и любыми другими пластификаторами безусловно ниже. Иногда глина достаётся бесплатно.

 

Правила при добавлении глины в цементный раствор

Количество глины не должно превышает по отношению к весу цемента 1:1 или 1,25:1. Дальнейшее увеличение объёма ведёт к резкому ухудшению морозостойкости и коэфициента размягчения раствора.

Качество применяемой глины играет важную роль. Так, глина с содержанием органические вещества, ухудшает показатели раствора.

Лучшие же показатели достигаются при введении в раствор кирпичных и строительных глин.

Значительное содержание органических веществ можно определить по сероватой, синевато-серой и черной окраске глины, а иногда и видимыми вкраплениями. Необходимо воздерживаться от применения подобных глин для строительных растворов. Наряду с гуминовыми веществами в глине могут встречаться органические вещества других форм: а) в виде растительных тканей (листья, стебли, корни, куски древесных стволов), которые легко могут быть изъяты из глины при ее подготовке; б) в виде органических веществ битуминозного характера, влияние которых на качество цементного раствора может считаться вредным лишь в редких (например, в весьма вредной форме бурого угля) случаях;
в) в виде твердого углерода в модификациях, сходных с антрацитом, что не считаться вредным.

Длительность и интенсивность смешивания растворов с добавлением глины имеет решающее значение на их прочность.

Так для цементно-известковых растворов тщательность перемешивания позволяет добиться только повышения общего качества раствора. Наличие же недостаточно промешанных включений извести, может привести лишь к частичному ослаблению кладки, к местным ее повреждениям и выветриванию. То, для цементно-глиняных растворов тщательность смешивания имеет гораздо более важное значение. Плохое промешивание раствора в котором глина осталась в форме отдельных включений, может повести к целому ряду серьезных дефектов кладки, так как такая глина будет обладать всеми нежелательными присущими ей свойствами:

  1. невозможность отвердевания во влажных условиях;
  2. способность размокать и выжиматься из швов, что поведет к осадке кладки и, возможно, к частичному появлению в ней трещин;
  3. пучиться вследствие замораживания во влажном состоянии, что может повести к расстройству кладки в целом.

Вышеуказанные нежелательные последствия не могут иметь места в случаях, когда глина тщательно перемешана с цементом и песком. Поэтому, контроль за полным перемешиванием должен стать основной задачей контроля правильности изготовления цементно-глиняных растворов.

Так, принимая прочность при минутном смешивании в бетономешалке за 100%, доведение чистого времени смешивания до 4,5 минут увеличивает прочность растворов почти вдвое, а прочность кладки на 25-30%. Благодаря интенсивности перемешивания увеличивается и пластичность раствора.

Предварительное просеивание и замачивание на сутки особенно комовой глины и доведения её до состояния жидкого теста, также повышает качество раствора. Это помогает избежать не растворенных частиц глины при замешивании.

Рекомендуем разводить глину таким количеством воды, которое нужно на замес раствора. И вводить его в растворомешалку при изготовлении раствора в виде глиняного молока.

Обычно это соответствует объемному весу глиняного молока около 1400—1500 кг/м3 при содержании глины в 650—850 кг/м3 молока. Считая на сухую глину относящейся к разряду кирпичных, которая показывает набухание в 1,5— 2,25 раза по сравнению с первоначальным объемом утрясенного сухого вещества.

 

Готовый цементно-глиняно-известковый раствор в ведре

 

Комбинирование глины и извести в цементном растворе

Введение в состав цементного раствора глины с известью более благоприятно, чем введение одной глины или только извести. Наилучшие результаты при этом дают те смеси, в которых соотношение извести и глины как 25 :75. (смотрите Таблицу №1) Это способствует некоторому сокращению расхода цемента при применении цементно-глиняно-известковых растворов.

 

Таблица № 1. Изменение прочности цементного раствора от добавления в него глины и извести в различных соотношениях.

 

Состав и приготовление растворов

При строительстве различных сооружений и их частей: столбы, стены, перемычки требуется раствор не одной какой-либо марки, а нескольких. Так, перемычки, должны выполняться (в зависимости от их нагрузки и конструкции) на растворах, имеющих прочность не ниже 30 кг/см2, а иногда и выше. Поэтому, подбор состава цементно-глиняного раствора, должен производиться таким образом, чтобы была получена заданная расчетная марка раствора. (Таблица №2)

 

Таблица №2. Приведены расчетные марки растворов, требуемые при различных допускаемых напряжениях на центральное сжатие кладки, выполняемой из кирпича разной прочности.

 

При приготовлений состав раствора также важно учитывать условия эксплуатации здания и его частей. От этого также зависит минимальный расход цемента, который приведён в таблице ниже.

Условия эксплуатации ограждающих конструкций, влажностный режим помещений по СНиП 23-02-2003

Минимальный расход цемента в кладочном растворе на 1 м3 сухого песка, кг

При сухом и нормальном режимах помещения100
При влажном режиме помещения125
При мокром режиме помещения175

 

РАСТВОРЫ МАРОК 8 И 15 КГ/СМ²

В целях упрощения, цементно-глиняные растворы марок 8 и 15 кг/см² могут не подбираться, а назначаться соблюдая следующие ограничения:

  • для получения необходимой морозостойкости раствора и необходимой водостойкости содержание цемента не должно быть менее 100 кг/м³ раствора, что примерно соответствует предельным составам раствора по объему 1 цем : 15 песка;
  • весовое содержание в растворе глинистых частиц (размером менее 0,01 мм по Сабанину) не должно превосходить 75—80% от весового содержания цемента; в соответствии с этим при применении обычных кирпичных глин количество вводимого в раствор глиняного молока (с объемным весом около 1400 кг/м3) не должно превышать 2—2,5 об. ч. на 1 об. ч. цемента.

 

Растворы других марок

Составы цементно-известковых и цементно-глиняно-известковых растворов для кладки или штукатурки стен помещений с нормальной влажностью и фундаментах в сухих грунтах. Цемент М400.

 

Составы растворов для кладки или штукатурки стен сырых помещений и фундаментов во влажных грунтах.

 

 

 

 

На примере одного объекта

Который был сделан много лет назад. Проводился капитальный ремонт дома на первом этаже под офис. Сам дом кирпичный 1907 года постройки.

Стены на этом объекте были спрятаны за гипсокартоном на металлокаркасе, из-за чего терялось по 10-15 см. пространства на каждой стене.

Сами стены дома были оштукатуренны известковой гарцовкой. После демонтажа штукатурки у завал стен был в среднем 7 см. Самый большое отклонение 12 см, местами были полости в стенах глубиной 25-30 см.

 

Как выбирали штукатурку

Помещение на первом этаже и с полами по грунту, от этого достаточно сырое. /p>

К тому же на стенах уже была известковая гарцовка. От неё на кирпичной кладке оставились частички извести, поэтому на такой поверхности надёжно держаться ничего не будет, кроме самой извести.

Плохая адгезия с такими стенами гипсовой и чисто цементной штукатурки, а также их высокая цена стали причиной выбора цементно-известковой штукатурки.

 

Подготовка стен для штукатурки

После демонтажа, стены были подметены и пропылесосены в 2 раза. И вот почему.

Грунтовать стены перед нанесением цементо-известковых растворов не надо. Как вы читали выше, достоинством таких растворов является хорошая паропроницаемость. Но, загрунтовав стены, вы тем самым уменьшите эту проницаемость. Такая особенность особенно важна в домах с периодическим отоплением (дача и редко посещаемые дома) или с сырыми стенами.

И главное, у такой штукатурки отличная адгезия и посредники здесь не нужны. Лучшее, что можно и нужно сделать это хорошо обеспылить стены щетками или пылесосом.

К тому же принцип такой гарцовки — это наносить её в достаточно жидком состоянии. Попав же на стену известково-цементный раствор передает содержащую в себе воду — стене, становясь тем самым хрупким и не пластичным. На такую поверхность можно набросить следующий слой. Грунтовка же, не даст впитаться воде и штукатурка будет съезжать с поверхности, из-за этого работа растянется во времени.

 

Как выставляли маяки

Толщина штукатурки у нас доходила до 12 см. На такую толщину ни на какой вид штукатурки не удастся зафиксировать маяк. Но, мы пытались это сделать на гипсовую штукатурку, что было ошибкой. Уже в выравненной стене через месяц, гипс под слоем штукатурки заплесневел. Всё из-за того, что известь сохнет долго, а на таких слоях особенно.

Лучше для «заморозки» маяков использовать цементные растворы. Если толщина очень большая, то использовать крепления для профилей маячков. На маяк достаточно 4 шт.

 

 

Первый и самый важный слой

Первый или адгезионный слой не только трудный но и самый грязный. Его делают с избыточным содержанием воды, консистенцией похожей на 1% кефир. Большая часть такого раствора стекает на пол и брызгает в стороны. Из-за этого много времени и сил уходит, чтобы раствор собрать с пола обратно в ведро. Для уборки удобно использовать широкий шпатель в сочетании с маленьким. Собранный раствор необходимо перемешивать добавляя воды, чтобы восстановить её потери.

Делать набрызг лучше от пола к потолку. Так видно, что раствор накинут силой, значит проник глубоко в поры стены и надёжно сцепился. Таким образом получатся надежная основа для дальнейшей многосантиметровой толщины. Если же накидывать раствор на стену сверху-вниз, то по большей части такой стены он стечёт схватившись лишь за случайные выступы. Что ненадежно.

Для нанесения раствора используют штукатурный ковш. Раствор наносят с небольшим размахом, чтобы раствор хорошо соединился со стеной. Так наносят все слои.

Адгезионный слой должен быть прочнее последующих слоёв, поэтому в неё соотношение цемента М-400 к песку с известью было 1 к 10. Последующие слои были 1 к 12, последние уже 1 к 15.

Адгезионный слой желательно оставить на сутки для твердения.

 

Второй и последующие слои

Второй и последующие слой раствора надо делать более густыми, похожий по консистенции на 15-20% жирности сметану.

Добавлять цемент нужно уже не 1 к 10, а к примеру 1 к 12 и уменьшать его содержание до 1 к 15. Такое содержание цемента в растворе достаточно и для фасадных работ, кроме цоколя. Нельзя

Работать уже будет легче и быстрее, потому что раствор более густой и он наносится более толстыми слоями. Раствор охотно цепляется к поверхности благодаря адгезионному слою и раствора на пол падает намного меньше.

Цементно-известковым и цементно-глиняно-известковым растворами вы сможете выровнять практически любую кривизну стен. Правда, если она большая, то работу придется делать за несколько дней. Цемент твердеет достаточно долго и набросить за день больше 2 слоёв не получится. Штукатурка будет съезжать со стен.

В таком случае оставьте работу на следующий день. Не беспокойтесь, перерыв в работе на качестве никак не скажется, просто продолжите работу с более жидкого замеса.

Надеемся, что тему раскрыли достаточно полно. Но, если у вас будут вопросы, мы обязательно на них ответим.

Можно ли добавлять цемент в глину при кладке печи | House. Всё о печах

Всем привет. В этой небольшой статье я хочу рассказать о работе с глиняным раствором в который добавлен цемент.

Цементный раствор.

Многие печники спорят как в жизни, так и на форумах. Кто-то всегда использует цемент в кладке печи, а кто-то категорически против этого. Поэтому я решил разобраться и написать свое мнение по этому поводу.

Самый часто задаваемый вопрос это: «Почему печь нельзя класть на цемент? Он же крепкий». Об этом даже меня практически всегда спрашивают заказчики.

Цитирую с сайта Википедия: «В условиях длительного воздействия высоких температур обычный бетон на портландцементе не пригоден к эксплуатации при температуре выше 250°. Установлено, что при нагреве обычного бетона выше 250—300° происходит снижение прочности с разложением гидрата окиси кальция и разрушением структуры цементного камня«.
Попытка исправить печь цементно-песчаный раствором.

Но это не самый важный момент. Цемент имеет совершенно иную степень расширения по сравнению с глиной, из которой делают кирпич. Поэтому печь из-за разности расширения материалов, начнет трескаться и рассыпаться. Материалы начнут отслаиваться друг от друга.

Поэтому в глиняный раствор нельзя добавлять цемент (какие-то доли процента конечно можно допустить, но я не вижу в этом какого-то смысла).

Но есть исключения в которых можно добавлять цемент, и даже полностью сложить печь на цементно-песчаном растворе (без глины). И сделать это можно в барбекю комплексах и каминах, где нет необходимости нагревать помещение массой печи. Сама топка в таких печах обкладывается шамотным кирпичом, с обязательной прокладкой базальтового картона. В таком случае основная кладка не нагревается более 50 градусов.

Еще цемент можно применять в местах где печь остается холодной (арки дровников, декоративные элементы, и др.)

Тепла и уюта Вам

Если статья была полезной, ставьте лайк, это лучшая благодарность.
Обязательно пишите свое мнение в комментариях, для меня это важно.
И конечно же подписывайтесь на мой канал.

Цемент : Известь : Глина

Энциклопедия
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
ВЯЖУЩИЕ МАТЕРИАЛЫ

Неорганические вяжущие — гипсовый цемент, известь, портландцемент и глина — под влиянием внутренних физико-химических процессов способны превращаться из жидкого или тестообразного состояния в твердое, связывая при этом в единое целое другие материалы.

Различают два вида вяжущих материалов — твердеющие только на воздухе — воздушные и материалы, на свойства которых после начала схватывания вода не может оказать отрицательного воздействия, а в некоторых случаях оказывает даже положительное воздействие — гидравлические. К воздушным относится глина, гипс и воздушная известь ( во влажных условиях они размокают и теряют прочность). К гидравлическим — гидравлическую известь и цементы.

Гипсовый цемент. Гипсовые цементы изготавливаются из природного гипсового камня путем дробления, измельчения, обжига в тигельной или непрерывно действующей печи и помола полученного продукта в тонкий порошок. Температура обжига не превышает 190° C, так что дегидратация гипса оказывается неполной. При схватывании гипсового цемента происходит гидратация с возвратом к исходной форме природного гипса (гидратированного сульфата кальция). Гипс — превосходный огнестойкий материал. Под действием огня выделяется гидратационная вода, и поверхность гипса покрывается порошком, защищающим глубинные слои. Стены и потолки помещений часто облицовывают гипсовыми листами.

Цемент

Цемент — наиболее распространенный вяжущий материал, позволяющий получать изделия и конструкции высочайшей прочности. Цемент — результат мелкодисперсного измельчения продуктов спекания одного из видов глины — мергеля или смеси известняка и глины. Процесс спекания ведется в специальных печах.

При измельчении к продуктам спекания делаются дозированные добавки гипса, шлака, песка и других компонентов, что позволяет получать цемент с самыми различными свойствами.

В зависимости от исходного сырья и введенных добавок цементы подразделяют на портландцементы и шлакопортландцементы. Среди потрландцементов выделяют быстротвердеющие и портландцементы с минеральными добавками.

Бетонные конструкции, в которых используется та или иная марка цемента могут приобретать уникальные свойства. Прежде всего это особо прочные бетоны, например, для взлетных полос аэродромов и ракетно-стартовых площадок, морозо-, огне- и солеустойчивые марки. Для обозначения максимальных прочностных качеств цемента применяется понятие марка. Марка 400 обозначает, что в заводской лаборатории при пробном испытании затвердевшего цементного кубика с ребром 100 мм при раздавливании на прессе он выдержал нагрузку не менее 400 кг/см2. Наиболее распространенными являются марки от 350 до 500. Изготавливаются же марки цемента до 600-й и даже 700-й марки.

Все цементы имеют достаточно быстрое время твердения. Начало твердения — схватывания — лежит в пределах 40 – 50 мин, а конец твердения около 10 – 12 часов.

Портландцемент

Изобретение портландцемента было запатентовано в 1824 Дж. Эспдином, каменщиком из Лидса (Англия), который дал ему это название, поскольку цемент походил на природный камень, добывавшийся на о. Портленд. Портландцемент по масштабам своего применения уступает лишь стали.

Портландцемент изготавливается совместным тонким измельчением клинкера, гипса и активных добавок. (Клинкер состоит в основном из силикатов кальция и получается обжиганием до спекания сырьевой смеси из известняка и глины. ) В работе с портландцементом важное значение имеет проверка качества. Она проводится с образцом чистого цементного теста, помещаемым в автоклав. По увеличению длины образца можно судить о расширении цемента при схватывании. Объемный вес портландцемента в рыхлом состоянии равен 1000 – 1100 кг/м3, а в уплотненном — 1400 – 1700кг/м3. Удельный вес колеблется в пределах 3,05 – 3,15 г/см3.

Прочные цементы. Разработаны цементы, прочность которых выше, чем обычных гидравлических, в том числе и портландцементов, и в отдельных случаях приближается к прочности керамических материалов. Главным принципом при их разработке было уменьшение отношения воды к цементу при сохранении необходимой пластичности цементного теста.

Известь

Известь выпускается в двух видах: негашеная и гидратная. Негашеная известь получается обжигом известняка CaCO3 в непрерывно действующих печах (при температуре 900 – 1000°C) для удаления диоксида углерода. Негашеная известь имеет марки 4,10,25,50 и служит для приготовления кладочных растворов, а также для изготовления силикатного бетона и кирпича. Гидратная известь Ca(OH)2 производится на заводах путем размельчения комовой негашеной извести, смешивания ее с водой и превращения в сухой хлопьевидный порошок. На строительной площадке негашеную известь необходимо загасить добавлением воды, а затем выдержать (не менее двух недель) перед смешиванием с песком для образования известкового раствора. Гидратную же известь достаточно смешать с песком, чтобы получить раствор. Поскольку она имеет вид порошка, ее легче смешивать с песком. Но раствор из гидратной извести не столь пластичен, как из негашеной. Затвердевание известкового раствора обусловлено поглощением диоксида углерода CO2 из воздуха. При этом избыточная вода испаряется, замещаясь диоксидом углерода, и гидратная известь снова превращается в CaCO3, причем эта реакция протекает только в присутствии избытка влаги. Но известковый раствор не твердеет под водой, так как ему для этого нужен диоксид углерода из воздуха. Раствор для кирпичной кладки содержит около 2,5 части (по объему) песка на 1 часть извести. При производстве штукатурных работ известковый раствор можно наносить на протяжении нескольких дней в три слоя (обрызг, грунт и накрывка), причем последний слой часто делается смесью гидратной извести с гипсовым цементом.

Глина

Глина — это мягкая, мелкодисперсная разновидность горных пород. При разведении водой образует пластичную массу, легко подвергающуюся любому формообразованию. При обжиге глина спекается, твердеет и превращается в камневидое тело, а при более высоких температурах обжига расплавляется и может достичь стекловидного состояния.

В зависимости от примесей глина принимает разный цвет окраски. Наиболее ценный сырьевой вид глины — белая глина — каолин. Глина имеет свойство впитывать воду до определенного предела, после которого она уже не в состоянии ее впитывать или пропускать через себя. Это свойство глины используется для создания насыпных гидроизоляционных слоев.

В зависимости от стойкости глины к температуре выделяют глины лекгоплавкие, тугоплавкие и огнеупорные. Их температуры плавления соответственно: 1380, до 1550 и выше 1550 градусов. Чистый каолин плавится при температуре выше 1750 градусов. Тугоплавкие глины служат сырьем для изготовления огнеупорных материалов.

Раствор для кладки печей и каминов: замешиваем своими руками

Чтобы построить камин или печь, чаще всего используют классический красный кирпич, его главные преимущества – долговечность, надежность, достаточная плотность, высокая теплоемкость и пожаробезопасность. При выполнении монтажных работ применяется специальный раствор для кладки печей, в основе которого – особые компоненты. От того, насколько добросовестно и в какой пропорции они будут смешаны, зависят устойчивость и крепость всей конструкции. Чаще всего при возведении печей используются растворы на основе глины, цемента или извести. Последние два материала – более предпочтительный выбор, если мастер приступил к возведению постамента для дымохода: цемент и известь отличаются большей прочностью и устойчивостью к появлению трещин. Чтобы будущая конструкция была стабильной, растворы для печей готовят в выверенных пропорциях, гарантирующих нужную пластичность и оптимальную густоту.

Важные моменты

Строительство печи проходит в несколько этапов, для каждого из которых характерен свой рецепт раствора. Сначала делают фундамент, работа над ним требует надежного бетонного раствора, в основе которого – цемент. После этого начинается кладка самой печи, как правило, для нее берут огнеупорный кирпич, и здесь не обойтись без кладочного раствора. Работа над дымоходом имеет свои особенности: в приоритете уже устойчивость не к высоким температурам, а к атмосферным изменениям, ведь его монтаж ведется не только в помещении. Финальный этап – покрытие печи штукатурным раствором, по составу также отличающегося от используемых ранее смесей.

Из всех перечисленных стадий наибольшее внимание стоит уделить приготовлению раствора для печной кладки. Он должен отвечать следующим условиям:

  1. Высокая жаростойкость, выраженная в способности противостоять влиянию открытого пламени и сохранять ровность поверхности даже под действием высоких температур.
  2. Хорошо сцеплять между собой даже жаростойкие кирпичи, обеспечивая минимальную толщину шва.

Чаще всего применяют печные смеси на основе глины, которые используются печниками уже в течение нескольких столетий. Для других этапов возведения печи характерно применение растворов на основе извести, а также смешанных – с добавлением к извести цемента либо цементно-песчаных.

Тем, кто хочет приготовить раствор для печной кладки своими руками, не обойтись без таких приспособлений, как:

  • строительный миксер;
  • поддон или другая похожая по форме емкость;
  • мерное ведро;
  • лопата;
  • сито;
  • шпатель;
  • мастерок;
  • термометр;
  • весы;
  • кельма.

Глиняные смеси по типу и консистенции

Для ее приготовления нужно взять глину, красную или белую, соединить с песком и затем добавить воду. Очень важно использовать для смеси только компоненты высокого качества: например, песок подойдет только калиброванный. Чтобы очистить его от мелкого гравия и различных растительных примесей, используют сито. То же самое проделывают и с глиной, добиваясь ее однородности. Как правило, используются следующие пропорции: по 1 части песка и глины либо 2 части песка и 1 – глины. Вода в растворе должна составлять примерно ¼ часть от количества глины.

Основной критерий готового раствора – уровень его жирности, от которого зависит эластичность и вяжущие свойства смеси, а значит, и надежность будущей конструкции. Стоит также уделить внимание чистоте используемой воды: лучше, если минералов в ней будет меньше. В противном случае сквозь штукатурку в дальнейшем могут проступить пятна, причиной которых станет достаточная минерализация жидкости.

Готовый раствор для печи должен быть в меру жирным: излишне мягкий приведет к тому, что готовая кладка может пойти трещинами, тощий раствор не обеспечит конструкции достаточную надежность. Идеальный раствор для кладки печи из кирпича – достаточно эластичный, гарантирующий сооружению стабильность после высыхания.

Песок: выбрать и подготовить

Основные компоненты самой простой смеси для кладки печи – глина и горный песок. Дело в том, что его частицы, в отличие от того, который добывают в морях и реках, отличаются большей шероховатостью, что улучшит адгезию раствора.

Перед тем как заняться приготовлением раствора, песок просеивают через достаточно мелкое сито (размер ячеек должен составлять примерно 1,5 x 1,5 мм). Если после этой процедуры в песке еще остались заметные примеси, его нужно промыть водой. Для этого используют раму, на которую натягивают мешковину. Струей воды небольшое количество песка, помещенное на приспособление, промывается до чистоты. Определить это легко по цвету стекаемой воды.

Оптимальная жирность глины

Чтобы проверить уровень жирности этого основного компонента кладочного раствора, есть элементарный способ. Нужно взять 0,5 л глины, смешивать с водой, чтобы по консистенции она стала похожа на крутое тесто. Затем полученную массу нужно тщательно размять и сформировать шарик диаметром 4–5 см. Когда он подсохнет, его нужно поместить между двумя дощечками и сжать их.

Если в результате шарик треснет, когда сожмут наполовину, его жирность велика, а, значит, смеси не хватает песка. Если почти сразу распадется – необходимо добавить глины. В том случае, если трещины пошли при сжатии шарика на треть, состав печной смеси подобран идеально.

Чтобы обеспечить надежность будущей печи, глиняный раствор для ее кладки должен быть приготовлен из тщательно очищенных компонентов и обладать нормальной или повышенной жирностью.

Очевидное достоинство раствора, ингредиенты которого тщательно подобраны и дозированы, состоит в том, что кладка будет иметь аккуратный внешний вид за счет тонкого шва. Кроме того, печная смесь нормальной жирности обеспечит конструкции достаточную надежность и долговечность. Правда, один недостаток у такого раствора все же есть: такой раствор не отличается устойчивостью к влажности окружающей среды.

Глиняный раствор: технология замешивания

Начать нужно с того, что очищенную от примесей глину оставить в воде примерно на сутки. Затем к ней нужно понемногу еще добавлять жидкость, добиваясь однородности массы. По консистенции смесь для печей и каминов должна быть похожа на густую сметану. Процедив, в нее нужно добавить песок до тех пор, пока печная смесь не станет тягучей. Чтобы придать раствору прочность, не обойтись без цемента и соли. Расходное количество этих компонентов – 700–750 г и 200 г на ведро соответственно.

Раствор для печной кладки по всем правилам

Как уже отмечалось, его идеальная консистенция должна соответствовать густоте сметаны. Если для него берется жирная глина, то к 1 части нужно добавить 2 части песка, если нормальная – пропорция должна быть равной.

Перед тем как приступать к кладке печи, необходимо проверить качество полученной печной смеси. Для этого потребуется скрепить раствором 2 кирпича, выждать примерно 5 минут, а затем поднять верхний кирпич. Если конструкция не распадается за несколько подъемов, раствор для кладки печи из кирпича подобран идеально. Если этого не произошло и сцепление быстро распалось, скорее всего, для приготовления раствора была взята тощая (нежирная) глина.

Опытные печники советуют также увеличить прочность раствора с помощью добавления
в него поваренной соли (на 10 кг глины достаточно 150 г). Сюда же можно добавить и цемент марки М400: 1 кг на тот же объем глины.

Когда начнется этап работы над дымоходом, глиняный раствор будет лучше заменить на известково-песчаный: он более устойчив к влаге. Для его приготовления нужно взять 3 части песка и 1 – известкового теста. Как вариант – 1 часть негашеной извести и 3 части воды.

Известковый раствор: виды

Как уже подчеркивалось ранее, глиняный раствор для дымохода (особенно – для той его части, которая находится над кровлей) крайне нежелателен. Его использование может привести к образованию трещин и последующему разрушению: глина плохо переносит конденсат.

Поэтому лучше не рисковать, а приготовить для возведения дымохода раствор на известковом тесте. Кстати, он подойдет и для строительства фундамента.

Для того чтобы приготовить такую смесь для печей и каминов, нужно взять 3 части песка и 1 – известкового теста. Чтобы получить последнее, нужно смешать 3 части воды и 1 – негашеной извести. Она напоминает размягченную жирную глину и по своему составу очень пластична. Если известковое тесто приготовлено правильно, его плотность составит 1400 кг/куб.м. Для возведения печных дымоходов, а также фундаментов, его можно приобрести уже готовым в любом строительном магазине.

Опасность собственноручного изготовления теста заключается в возможном риске получения ожогов кожи и верхних дыхательных путей. На заводах известь гасят в специально предназначенных для этого машинах. Если же купить известковое тесто нет возможности, при его приготовлении нужно соблюсти все меры безопасности: работать только в очках и маске, использовать перчатки, а также надеть пыленепроницаемую одежду.

Количество песка, которое нужно будет добавить, чтобы приготовить раствор, напрямую будет зависеть от того, насколько высока жирность известкового теста. Максимальный объем – 5 частей. До начала смешивания ингредиентов тесто рекомендуют пропустить через сито (размер ячеек – 1 на 1 см). Чтобы добиться нужной густоты, не обойтись без добавления жидкости.

Для того чтобы повысить надежность раствора, в него можно также добавить цемент. В этом случае пропорции будут такими: 1 часть цемента, 8-10 – песка, 2 – известкового теста. Полученный раствор, кроме уже указанного преимущества, будет также обладать повышенной устойчивостью к влажности среды.

Готовят его в следующей очередности: сначала смешивают цемент и песок, затем в известковое тесто наливают воду, чтобы оно приобрело вязкость. После этого в него добавляют ранее приготовленную сухую смесь для кладки печей, а потом – снова воду, чтобы раствор был вязким.

Цемент как основа для раствора

Для строительства фундамента печи раствор нужно подобрать такой, чтобы обеспечить
конструкции надежность и устойчивость, и для этих целей лучше всего подойдет цемент. Такая смесь подойдет и для возведения той части дымохода, которая будет возвышаться над кровлей. Состав раствора – цемент, песок и вода. Чаще всего пропорции используют такие: 1 часть цемента марки М300 или М400 и 3 – песка. Компоненты нужно хорошо перемешать и разбавить водой до густоты сметаны. Получившаяся смесь для кладки печей должна быть подвижной, но не стекать со штыка лопаты, если она расположена под углом в 45 градусов.

Для фундамента и дна топочной камеры потребуется печная смесь с хорошей жаростойкостью. Вот ее состав: на 1 часть портланцемента М300 или М400 берут 0,3–0,5 частей шамотного песка и по 2 – мелко просеянного песка и щебня (подойдет и гравий).

Покупные сухие смеси

Тем, кто не хочет заниматься выбором качественных компонентов для смеси, можно использовать готовые жаростойкие растворы для печей и каминов. Хорошо зарекомендовала себя продукция отечественных производителей, гарантирующих оптимальное сочетание цены и качества: «ПЛИТОНИТ», «ТЕРРАКОТ», «Печной дом Макаровых», а также «ПечникЪ», «Сканэкс» и «СПО».

Чтобы приступить к работе, в готовую смесь для кладки печей нужно добавить только воду.

Заключение

Не стоит забывать, что правильно подобранный раствор для печи – это залог безопасности домашнего очага. Если отнестись к выбору ингредиентов или приготовлению раствора кое-как, нужная герметичность обеспечена не будет, из-за чего вполне возможна утечка угарного газа. Если собственное умение вызывает сомнения, не стоит рисковать – лучше доверить мастеру и приготовление раствора, и возведение печи.

Похожие статьи:

Как производится цемент

Портландцемент — основной ингредиент бетона. Бетон образуется, когда портландцемент образует пасту с водой, которая связывается с песком и камнем, чтобы затвердеть.

Цемент производится с помощью строго контролируемой химической комбинации кальция, кремния, алюминия, железа и других ингредиентов.

Обычные материалы, используемые для производства цемента, включают известняк, ракушечник и мел или мергель в сочетании со сланцем, глиной, сланцем, доменным шлаком, кварцевым песком и железной рудой.Эти ингредиенты при нагревании при высоких температурах образуют каменное вещество, которое измельчается в мелкий порошок, который мы обычно называем цементом.

Каменщик Джозеф Аспдин из Лидса, Англия, впервые изготовил портландцемент в начале XIX века путем сжигания порошкообразного известняка и глины в своей кухонной плите. С помощью этого грубого метода он заложил основу отрасли, которая ежегодно буквально перерабатывает горы известняка, глины, цементной породы и других материалов в порошок, настолько мелкий, что он может проходить через сито, способное удерживать воду.

Лаборатории цементного завода проверяют каждый этап производства портландцемента путем частых химических и физических испытаний. Лаборатории также анализируют и тестируют готовый продукт, чтобы убедиться, что он соответствует всем отраслевым спецификациям.

Самый распространенный способ производства портландцемента — сухой метод. Первый шаг — это добыча основного сырья, в основном известняка, глины и других материалов. После добычи порода дробится. Это включает в себя несколько этапов.Первое дробление уменьшает размер камня до максимального размера около 6 дюймов. Затем порода поступает на вторичные дробилки или молотковые дробилки для измельчения до 3 дюймов или меньше.

Дробленая порода смешивается с другими ингредиентами, такими как железная руда или летучая зола, измельчается, смешивается и подается в цементную печь.

Цементная печь нагревает все ингредиенты до температуры около 2700 градусов по Фаренгейту в огромных стальных цилиндрических вращающихся печах, облицованных специальным огнеупорным кирпичом. Обжиговые печи часто достигают 12 футов в диаметре — достаточно большого размера, чтобы вместить автомобиль, и во многих случаях больше, чем высота 40-этажного здания.Большие печи устанавливаются с небольшим наклоном оси от горизонтали.

Тонко измельченное сырье или суспензия подается в верхнюю часть. На нижнем конце — ревущий взрыв пламени, произведенный точно контролируемым сжиганием порошкообразного угля, нефти, альтернативного топлива или газа при принудительной тяге.

По мере того, как материал движется через печь, определенные элементы уносятся в виде газов. Остальные элементы объединяются, образуя новое вещество, называемое клинкером.Клинкер выходит из печи серыми шарами, размером с мрамор.

Клинкер выгружается раскаленным из нижнего конца печи и обычно доводится до рабочей температуры в различных типах охладителей. Нагретый воздух из охладителей возвращается в печи, что позволяет сэкономить топливо и повысить эффективность горения.

После охлаждения клинкера цементные заводы измельчают его и смешивают с небольшим количеством гипса и известняка. Цемент настолько мелкий, что в 1 фунте цемента содержится 150 миллиардов зерен.Теперь цемент готов к транспортировке компаниям по производству товарного бетона для использования в различных строительных проектах.

Хотя сухой процесс является самым современным и популярным способом производства цемента, в некоторых печах в США используется мокрый процесс. Эти два процесса по сути схожи, за исключением мокрого процесса, когда сырье измельчается с водой перед подачей в печь.

Teen добавляет крошечные кусочки глины, чтобы цемент плыл по течению

ВАШИНГТОН, Д.С. — Наука вокруг нас, даже на бетонных тротуарах у нас под ногами. Большинство людей может не задумываться о цементе. Это то, что связывает скалистые компоненты бетона, используемого в зданиях, мостах и ​​дорогах. Но цемент привлек внимание Августы Умваманзу-Нна. 17-летний мужчина был полон решимости найти новые и экологически безопасные способы создания этого строительного блока из, ну, зданий. Теперь она сообщает, что благодаря добавлению крошечных частиц глины в рецепт жидкий цемент течет лучше, чем когда-либо.

Огаста надеется, что ее новый цемент однажды поможет предотвратить катастрофы, такие как разлив нефти Deepwater Horizon .

Учителя и родители, подпишитесь на шпаргалку

Еженедельные обновления, которые помогут вам использовать Новости науки для студентов в учебной среде

Огаста учится в старшей школе Elmont Memorial High School в Нью-Йорке. Она представила свой проект на сайте Intel Science Talent Search, который проводится Обществом науки и общественности и спонсируется Intel Corp.в Санта-Кларе, Калифорния. Каждый год поиск собирает 40 старшеклассников, чтобы не только представить свои исследования публике, но и побороться за огромные награды.

Огаста не начинала с страсти к цементу. «Сначала я выбрала что-то более традиционное, — говорит она, — проект по биологии. «Я думаю, это было связано с планариями и », — говорит она. Но вскоре она почувствовала неудовлетворенность изучением плоских червей. Она хотела сделать что-то другое.

Итак, в 10 классе подросток начал изучать цемент.Она узнала, что он сделан из оксида кальция, вместе с кремнием, железом, алюминием и сульфатом. Когда он смешивается с водой, образуется жидкость, которой можно наливать любую форму. По мере высыхания он затвердевает, связывая вместе кирпичи и камни, создавая прочные структуры. Производители смешивают его с песком и обычно измельченным камнем для производства бетона.

Оксид кальция, используемый в цементе, получают путем обжига известняка при очень высокой температуре. В процессе выделяется большое количество диоксида углерода .Но затем этот газ может накапливаться в атмосфере Земли. Действуя как парниковый газ, он может удерживать тепло у поверхности нашей планеты.

Огаста пришла в ужас, узнав, что производство цемента может нанести вред окружающей среде. Она подумала, что должен быть лучший способ сделать этот строительный материал, который используется в огромных количествах во всем мире.

Августа Умваманзу-Нна разработала метод изготовления цемента, который течет больше как вода, но затвердевает в твердое тело. Л. Доан / SSP Она начала работать в школьной лаборатории. Там она смешала переработанные материалы с цементом в качестве замены оксида кальция. Она добавила матовое стекло или керамический материал, а затем проверила прочность измененного материала. «Мне пришлось натянуть эту машину… это была деревянная штука, и я использовала жимовые гири из спортзала», — говорит она. Чтобы измерить температуру застывшего цемента, она использовала чашки из пенополистирола и термометр. Но ее самодельная установка не могла дать ей необходимых подробных данных, и она так и не смогла определить, лучше ли ее новый цемент для окружающей среды.Вскоре Огаста поняла, что ей нужна лаборатория получше. Поэтому она позвонила инженеру-строителю, изучающему бетон. Ее зовут Шихо Кавасима, и она работает в Колумбийском университете в Нью-Йорке.

Когда Кавасима сказала, что у нее нет места в лаборатории, «У меня больно сердце», — вспоминает Августа. Но подросток отказался сдаваться. Ее учитель естественных наук предложил ей попробовать поработать с крабами. Вместо этого подросток нашел летнюю работу у инженера-строителя Энги Лю в Нью-Йоркском университете в Бруклине. Там она узнала больше о цементе и о том, как предсказать, когда конструкции могут нуждаться в ремонте.

Августа держала Кавасиму в курсе своих успехов. Наконец, к лету, после первого года обучения Августы, подросток смог поступить в инженерную лабораторию Колумбийского университета. Там подросток продолжил корректировать рецепт цемента, который используется для герметизации подводных нефтяных скважин.

Когда нефть перекачивается из участков под дном океана, она выходит через трубу. Труба залита цементом. Этот слой цемента предотвращает попадание масла в окружающую среду через любые образовавшиеся трещины.Но при использовании некачественного цемента могут быть большие последствия. Неисправный цемент вокруг труб стал причиной разлива нефти Deepwater Horizon в Мексиканском заливе в 2010 году. В результате этого инцидента в окружающую воду попали миллионы баррелей нефти. Спустя годы разлив все еще влияет на окружающую среду.

Огаста намеревается улучшить цемент, используемый в этих нефтяных скважинах. Она обнаружила, что добавление очень мелких частиц глины, называемых наноглиной, помогает цементу течь более равномерно при заливке.Подросток показал, что нужно добавить только 0,3 процента наноглины, чтобы увидеть улучшение.

Проект подростка заставил ее взглянуть на цемент в совершенно новом свете. Раньше «я бы просто приняла мост как должное, [никогда] не подозревая, что он такой чувствительный», — говорит она. Но теперь она видит, насколько важными могут быть строительные материалы. Пока что цемент Августы прошел испытания только в лаборатории. Однажды, как она надеется, его можно будет применить к нефтяным скважинам, чтобы снизить риск разрушительных разливов.

Подписаться Eureka! Лаборатория в Твиттере

Слова мощности
(чтобы узнать больше о Power Words, нажмите здесь )

атмосфера Оболочка из газов, окружающих Землю или другую планету.

биология Изучение живых существ. Ученые, изучающие их, известны как биологов .

оксид кальция Вещество, выделяющее тепло при химической реакции с водой. Его химическая формула — CaO (что означает, что каждая молекула состоит из одного атома кальция и одного атома кислорода).

двуокись углерода (или CO2) Бесцветный газ без запаха, вырабатываемый всеми животными, когда вдыхаемый ими кислород вступает в реакцию с богатой углеродом пищей, которую они съели.Углекислый газ также выделяется при сжигании органических веществ (включая ископаемое топливо, такое как нефть или газ). Двуокись углерода действует как парниковый газ, удерживая тепло в атмосфере Земли. Растения превращают углекислый газ в кислород во время фотосинтеза, процесса, который они используют для приготовления пищи.

цемент Тонкоизмельченный материал, используемый для связывания песка или кусочков измельченной породы в бетоне. Цемент обычно начинается с порошка. Но после намокания он становится похожим на грязь илом, который затвердевает по мере высыхания.

керамика Твердый, но хрупкий материал, полученный обжигом глины или другого минерала на неметаллической основе при высокой температуре. Кирпичи, фарфор и другие виды фаянса — образцы керамики. Многие высококачественные керамические материалы используются в промышленности, где материалы должны выдерживать суровые условия.

инженер-строитель Инженер, который создает здания, туннели, водные системы и другие крупные объекты, улучшающие повседневную жизнь.

глина Мелкозернистые частицы почвы, которые слипаются и могут деформироваться во влажном состоянии.При обжиге на сильном огне глина может стать твердой и хрупкой. Вот почему его используют для изготовления гончарных изделий и кирпича.

изменение климата Долгосрочное существенное изменение климата Земли. Это может произойти естественным образом или в ответ на деятельность человека, включая сжигание ископаемого топлива и вырубку лесов.

бетон (в строительстве) Простой строительный материал, состоящий из двух частей. Одна часть сделана из песка или измельченного камня. Другой сделан из цемента, который затвердевает и помогает связать зерна материала.

окружающая среда Сумма всех вещей, которые существуют вокруг некоторого организма или процесса, и условия, которые эти вещи создают для этого организма или процесса. Окружающая среда может относиться к погоде и экосистеме, в которых живут некоторые животные, или, возможно, к температуре, влажности и размещению компонентов в какой-либо электронной системе или продукте.

парниковый газ Газ, способствующий парниковому эффекту за счет поглощения тепла. Двуокись углерода — один из примеров парникового газа.

Intel Science Talent Search Ежегодный конкурс, созданный и проводимый Обществом науки и общественности и спонсируемый корпорацией Intel. Начатый в 1950 году, это мероприятие собирает 40 старшеклассников, ориентированных на исследования, в Вашингтон, округ Колумбия, чтобы продемонстрировать свои исследования перед общественностью. публике и побороться за награды.

известняк Природная порода, образованная накоплением карбоната кальция с течением времени, а затем сжатая под большим давлением. Большая часть исходного карбоната кальция поступала из панцирей морских животных после их смерти.Однако это химическое вещество также может оседать из воды, особенно после удаления углекислого газа (например, растениями).

nano Префикс, обозначающий миллиардную. В метрической системе измерений он часто используется в качестве аббревиатуры для обозначения объектов длиной или диаметром в одну миллиардную метра.

планарий (множественное число планария ) Род плоских червей. У них есть способность восстанавливать утраченные части тела.

Общество науки и общественности (или SSP) Некоммерческая организация, созданная в 1921 году и базирующаяся в Вашингтоне, округ Колумбия. С момента своего основания SSP способствует не только вовлечению общественности в научные исследования, но и общественному пониманию науки. Он создал и продолжает проводить три известных научных конкурса: Intel Science Talent Search (начат в 1942 году), Intel International Science and Engineering Fair (первоначально был запущен в 1950 году) и Broadcom MASTERS (создан в 2010 году).SSP также публикует отмеченные наградами журналистские работы: в Science News (запущен в 1922 г.) и Science News for Student (создан в 2003 г.). Эти журналы также ведут серию блогов (включая Eureka! Lab).

Песок и глина не делают бетон

Что происходит, когда вы добавляете песок в глинистую почву? Многие утверждают, что в результате получается бетон, а другие говорят, что в результате получается почва, которую легче копать. Как могут быть такие большие расхождения в том, что так легко проверить?

Почему это проблема? Садовникам с тяжелой глиной трудно копать, поэтому они хотят ее рыхлить. Песок очень легко копать, и разумно добавить его, чтобы создать более рыхлую почву.

Треугольник текстуры почвы — песок и глинистый грунт

Песок и глина для изготовления бетона

Этот миф, как уже было сказано, несложно развенчать. Бетон — это смесь песка, гравия и цемента. Поскольку ни глинистый грунт, ни песок не содержат цемента, он не может образовывать бетон.

Может быть, когда люди говорят «бетон», они имеют в виду твердую почву? Глина становится тверже, когда вы добавляете в нее песок?

Создание Adobe

Некоторые люди утверждают, что песок и глина образуют саман, прочный материал, используемый на юго-западе США и в Центральной Америке для изготовления кирпичей.Саманец сделан из почвы, которая содержит примерно 70% песка и 30% глины. Слишком много глины не сделает кирпичи твердыми. Тяжелая глинистая почва составляет около 60% глины, а не 30%. Добавление небольшого количества песка не создаст почву с 70% песком, поэтому из него не получится саман.

Региональные отделения

Большинство садовников, верящих в этот миф, родом из Юго-Запада США. Сообщений достаточно, и я начинаю думать, что в их утверждениях что-то есть. Люди рассказывают историю о том, как они добавили немного песка и в итоге оказались настолько твердыми, что они вообще не могут копать.Может, использовали не тот песок?

С другой стороны, жители Европы рекомендуют добавлять песок регулярно. Многие лучшие садоводы, такие как Бет Чатто, используют этот метод для рыхления глинистой почвы. Поиск в Google на сайтах Великобритании даст вам длинный список рекомендаций по добавлению песка в глину. Они действительно предупреждают, что это должен быть грубый строительный песок, а не гладкий песок для детских площадок.

Австралийцы также рекомендуют добавлять песок в глинистую почву, но их проблема в основном заключается в песчаной почве, и в этом случае они добавляют в нее глину.

Эти региональные различия предполагают, что глина, песок или климат в этих регионах влияют на результаты, которые видят люди.

Научные доказательства

Существует множество ссылок на исследования в Калифорнии, но никто никогда не сообщает подробностей. Я безуспешно искал и искал его несколько лет. Никто из тех, кто утверждает, что он существует, его не создал. Если у вас есть референция, разместите ее в комментариях.

Личный опыт

В моем первом саду была очень тяжелая глина, из которой можно было делать скульптуры.Выкопав 3-4 дюйма песка, земля стала достаточно рыхлой, чтобы ее можно было копать, и растения начали лучше расти. После добавления песка почва не стала тверже.

В моих следующих двух садах было 50% и 40% глины. Добавление песка в обоих случаях давало более рыхлую почву.

Все эти сады находятся в Южном Онтарио.

Некоторые утверждают, что нельзя правильно смешать песок с глиной, и это совершенно верно. Я обнаружил, что песок покрывает комки глины и не дает им снова соединиться.Эта почва теперь имеет песчаные каналы, которые пропускают больше воздуха и воды в почву. Даже через 5 лет я все еще вижу каналы, когда что-то сажаю. Имейте в виду, что я как можно меньше беспокою почву.

Треугольник текстуры почвы

Треугольник текстуры почвы, изображенный выше, показывает количество глины, ила и песка в различных типах почвы. Треугольник полезен для классификации почвы, но я думаю, что он привел к мифу о том, что вам нужно добавить 30-40% песка, прежде чем вы окажете какое-либо влияние на почву.Глядя на треугольник, кажется, что это так. Если ваша почва находится в середине участка глины, вам нужно добавить много песка, прежде чем он станет песчаной глиной или суглинком. Но это просто удобный способ маркировать почву; это не значит, что небольшое количество песка не имеет значения. Не вся почва в районе желтой глины имеет одинаковые свойства. Почва с 80% глины и почва с 45% очень разные, но оба они по-прежнему классифицируются как глинистые.

Для изменения свойств почвы не нужно большое количество песка.

Логическая экстраполяция

Поскольку у нас нет научных данных, давайте рассмотрим это логически. Допустим, у вас глинистая почва, и после добавления песка становится все труднее. Что будет, если добавить еще песка? Если миф правдоподобен, полученная почва будет еще тверже. Добавьте еще песка, и он станет еще труднее. В какой-то момент у вас будет почти чистый песок, твердый, как алмаз. Имеет ли это логический смысл?

Даже если есть критическая точка, в которой добавление песка делает почву более твердой, у большинства садоводов почва не будет в критической точке.Логика ясно показывает, что в лучшем случае миф верен только для некоторых глинистых почв.

Глиняная почва не делает глину тверже

Без каких-либо научных доказательств, скорее всего, песок не делает большую часть глины тверже. Возможно, глина на юго-западе другая и по-разному реагирует с песком. Ведь видов глинистых грунтов много.

Песок не создает хорошую почву

Песок может разрыхлить почву для рытья, и он может даже открыть ее и позволить большему количеству воздуха проникнуть в почву, но он не может сделать хорошую почву и не улучшит ее структуру. В глинистую почву нужно добавить больше органических веществ. Это увеличит активность микробов и только тогда улучшится структура почвы.

Ищу комментарии

Если у вас есть опыт добавления песка в глину, сообщите мне о ваших результатах. Обязательно укажите некоторую информацию о том, где вы живете.

Анализ влияния добавления песчаной глины в цементный раствор на прочность на изгиб призм из кирпичной кладки

[1] П.Б. Лоуренсу и Дж. Г. Ротс, Многоповерхностная модель интерфейса для анализа каменных конструкций, J. Eng. Мех., Т. 123, нет. 7. С. 660–668, (1997).

DOI: 10. 1061 / (asce) 0733-9399 (1997) 123: 7 (660)

[2] Дж.Бахтери, А. М. Махтар, С. Самбасивам, Конечно-элементное моделирование структурной кладки из глиняного кирпича Моделирование конечных элементов структурной кладки из глиняного кирпича, подвергнутой осевому сжатию, J. Teknol., Vol. 41, с.57–68, (2004).

DOI: 10.11113 / jt.v41.698

[3] Л. Ю. Шен, В. И. Там, С. М. Там и С. Хо, Отходы материалов при строительстве, исследование в Гонконге, в материалах первой международной конференции CIB-W107 по созданию устойчивой строительной отрасли в развивающихся странах, 2000 г., стр.125– 131.

[4] ГРАММ.Эдджелл и Б.А. Хазелтайн, Строительный раствор для малоэтажного жилья: рекомендации, проблемы и решения, (2006).

[5] Ф. H. Sabatini, O processoconstrutivo de edifcios de alvenariaestrutural sílicocalcário, MS thesise, Univ. Сан-Паулу, Сан-Паулу, Бразилия (в порту, (1984).

[6] С.ASTM, C 78-94, Stand. метод испытания прочности на изгиб Конкр. (на простой балке с нагрузкой по третьей точке). Являюсь. Soc. Тест. Mater. Филадельфия, стр.3, (2000).

DOI: 10.1520 / c0078_c0078m-10e01

[7] С. ASTM, 293-94, Stand. Метод испытаний Прочность на изгиб Конкр. (Использование простой балки с нагрузкой в ​​центре) ASTM Stand. (1998).

[8] С.S. Association и другие, CSA A179-04, Строительный раствор и раствор для каменной кладки, Миссиссауга, Онтарио, (2004).

[9] Мауренбрехер А. H.P., Влияние процедур испытаний на прочность на сжатие призм кладки, Труды, Second Can. Мейсон. Symp., P.119–132, (1980).

[10] Ф.М. Халаф, А. В. Хендри и Д. Р. Фэйрбэрн, Исследование прочности на сжатие блочной кладки, Struct. J., т. 91, нет. 4, с.367–375, (1994).

[11] Д. А. Лэрд, Р. Дж. Дрисдейл, Д. В. Стаббс и Г. Р. Стерджен, Новый CSA S304. 1-04 «Проектирование каменных конструкций», Материалы 10-го Канадского симпозиума по масонству. Банф, Альберта, 2005 г., стр. 8–12.

[12] Дж.A. Thamboo, M. Dhanasekar и C. Yan, Влияние толщины шва, адгезии и перегородки оболочки на бетонную кладку, уложенную лицевой оболочкой, нагруженную сжатием, Aust. J. Struct. Англ., Т. 14, вып. 3, с.291–302, (2013).

DOI: 10. 7158 / s12-035.2013.14.3

[13] Б.Гиасси, Д. В. Оливейра, П. Б. Лоуренсу и Г. Маркари, Численное исследование роли строительных швов в поведении сцепления кладки из армированного стеклопластиком. Часть B англ., Т. 46, стр.21–30, (2013).

DOI: 10.1016 / j.compositesb.2012.10.017

[14] С. Мишра, Влияние различных связующих веществ на спекание строительного раствора на основе al2o3-sio2, (2014).

[15] В.Коринальдези и Г. Морикони, Поведение цементных растворов, содержащих различные виды переработанного заполнителя, Констр. Строить. Матер., Т. 23, нет. 1. С. 289–294, (2009).

DOI: 10.1016 / j.conbuildmat.2007.12.006

[16] В. Коринальдези, М. Джуджолини и Г. Морикони, Использование обломков от сноса зданий в минометах, Управление отходами, т. 22, нет. 8, с.893–899, (2002).

DOI: 10.1016 / s0956-053x (02) 00087-9

[17] В.Коринальдези, Механическое поведение блоков кладки, изготовленных с использованием строительных смесей из переработанного заполнителя, Cem. Concr. Compos., Т. 31, нет. 7. С. 505–510, (2009).

DOI: 10. 1016 / j.cemconcomp.2009.05.003

[18] Б.С. RU, 13139: 2002 Заполнители для раствора ,, Бр. Стоять. Ин-т, (2002).

[19] Б.En, 12390-3 (2009). «Испытание затвердевшего бетона: сопротивление сжатию испытательных образцов» ,, Br. Стоять. Учреждение, Лондон, (2000).

[20] О.Предоставьте строительный раствор типа «M» или типа «S» согласно ASTM C270, «тип» N, строительный раствор НЕ является.

[21] Б. S. EN, 12390-5 (2009) «Испытания затвердевшего бетона. Прочность на изгиб образцов для испытаний, Br. Стоять. Учреждение, Лондон.

Ранняя и поздняя оценка прочности портландцемента, содержащего кальцинированную низкосортную каолиновую глину

Термически обработанные низкосортные каолиновые глины теперь считаются подходящим пуццолановым материалом для метакаолинов.Однако их пригодность в качестве хорошего пуццоланового материала зависит от геохимии и структуры глины, на которую обычно влияют географические условия. В этом исследовании исследовалась низкосортная каолиновая глина из Ньямбекьера в регионе Ашанти в Гане. Проанализировано влияние кальцинированного материала на раннее и позднее развитие прочности портландцемента. Первоначальная 3- и 7-дневная прочность, а также поздняя 28-дневная прочность портландцемента, замененного на 20% по массе кальцинированного материала, дали оптимальные значения прочности. Дальнейший анализ с использованием твердотельного ядерного магнитного резонанса с вращением под магическим углом (Ss MAS-ЯМР) с зондированием в среде алюминия (Al) для обнаружения присутствия и природы гидратов Al с использованием оптимальной пропорции смеси. Результаты Ss MAS ЯМР показали, что усиление прочности оптимальной смеси было связано с ростом стабильных моносульфатных соединений в октаэдрическом окружении, возникающих из метастабильных алюминатных фаз в тетраэдрическом окружении. Для большей надежности показателей прочности бетона в исследовании рекомендуется использовать 20% обожженную глину из глины Ньямебекьер в качестве замены портландцемента.

1. Введение

Портландцемент — важный строительный материал, поддерживающий бетонную промышленность для инфраструктуры и жилищного строительства. Бетон — второй по потреблению материал после воды. Исследования показали, что не только портландцемент используется для приготовления прочного бетона, но также возможна смесь портландцемента и дополнительных вяжущих материалов (SCM). SCM, которые использовались в бетоне, включают пуццолановые материалы, такие как летучая зола, шлак, микрокремнезем и метакаолин [1–3].Обычно SCM используются для замены от 20% до 40% портландцемента по весу. Известно, что использование SCM в качестве частичной замены цемента повышает прочность бетонов, а также увеличивает долговечность бетона при минимизации стоимости цемента.

Метакаолины — это СКМ, получаемые при прокаливании высококачественных каолиновых глин [4, 5]. Каолиновые глины высокого качества присутствуют в земной коре в ограниченных количествах. Следовательно, это делает метакаолин дорогим строительным материалом. Однако земная кора содержит огромное количество каолиновых глин среднего и низкого содержания.Каолиновые глины высокого содержания — это глины с содержанием каолинита более 65%, тогда как средние и низкие содержания каолинита составляют от 40% до 65% и ниже 40% соответственно [6, 7]. Доступность каолиновых глин с низким содержанием по сравнению с глинами с высоким содержанием привлекла внимание исследователей к разработке пуццоланов из глин такой природы. Авторы, включая Фернандеса и др. [8], He et al. [9], а также Maia et al. [4] показали, что кальцинированные низкосортные каолинитовые глины улучшают прочность и долговечность бетонов лучше, чем бетоны из портландцемента.Однако реакционная способность этих кальцинированных глин зависит от географического положения, которое также влияет на их структуру и химический состав. Различия в структуре и химическом составе глины из конкретного места обуславливают необходимость исследований региональных или местных глинистых материалов в качестве подходящего SCM.

Глина очень распространена в Гане; однако их обработка и использование в качестве пуццолана остаются проблемой [10]. В Гане уже есть работы из Атиемо [11] и Бедиако и Атиемо [12], в которых для производства пуццолана использовалась глина Манкрансо, Хвересо и Мфенси.Все эти упомянутые области в Гане имеют огромные залежи глины. Производство пуццолана из глины осуществляется путем прокаливания глины при температуре от 600 до 900 ° C [13]. Эта работа направлена ​​на производство глиняного пуццолана из глины, добытой из Ньямебекьера в регионе Ашанти в Гане. Район Ньямебекьер — это небольшая фермерская община в Гане с обилием глины, количество которой еще предстоит определить. Основная цель исследования — изучить влияние кальцинированной глины Ньямебекьер на ранние и прочностные свойства портландцементных растворов.Анализ прочности на сжатие был выполнен на образцах раствора с использованием машины для испытания на прочность. Результаты прочности были подтверждены исследованиями 27 Al MAS ЯМР для дальнейшего объяснения характеристик оптимальных смесей портландцемента и кальцинированной глины.

2. Материалы и методы
2.1. Материалы

Материалы, использованные для исследования, включали портландцемент, глина, песок, водопроводную воду и водоредуктор. Портландцемент был получен из Ясеневой рощи в Шануте, штат Канзас.Глина была добыта в Ньямебекере в районе Ашанти. Использованный песок представлял собой кварцевый песок лабораторной сортировки, соответствующий стандарту ASTM C778. Редуктор воды имел поликарбоксилатное происхождение под названием Glenium 7500. Водопроводная вода поступала из кранов гражданской лаборатории Университета Миссури в Канзас-Сити (UMKC). В таблице 1 представлены свойства портландцемента и глины. На рис. 1 также представлены характеристики Ss MAS ЯМР сырой глины. На рисунке показаны два различных химических сдвига при 68.30 ppm и -0,76 ppm, которые представляют тетраэдрическую и октаэдрическую среду, соответственно, характеризуют глину как каолиновую глину 1: 1. Фактическое содержание глины около 28,4% в глине Nyamebekyere также помещает глину в категорию низкосортной каолиновой глины.

.7

9033 9035 9034 9034 9034 5934 9034 9034 9034 5934 3 (%) 2,92 9034 9034 (> 2 мм)

Свойство PC Необработанная глина

Физический
Удельный вес 3,13
Химические вещества
SiO 2 (%) 4,26 25,53
Fe 2 O 3 (%) 3,14 5,22
CaO (%) 63. 48 0,16
MgO (%) 2,11 1,37
SO 3 (%) 2,9 0,07
0,07
Na3 (%) 0,49 2,41
LOI (%) 2,2 4,5
Минералогия
S
C 2 S (%) 15
C 3 A (%) 6
C 4 AF (%)
Гранулометрический состав (%)
Глина (<2 мкм м) 28.4
Ил (2 мкм м – 0,05 мм) 19,5
Песок (0,05–2 мм) 52
0,1


2,2.
Методы
2.2.1. Прокаливание глины

Неочищенную глину измельчали ​​до мелких частиц размером от 150 мкм до 2 мм с использованием молотковой мельницы.Измельченная глина помещалась в керамическую чашу и прокаливалась в лабораторной электропечи (Barnstead Thermolyne 6000), работающей при 800 ° C в течение 2 часов. После двухчасового прокаливания печь выключили и дали остыть в течение примерно 24 часов. Прокаленный материал собирали из чаши и просеивали через сито 75 мкм мкм. Те, которые попали под сито, были собраны, добавлены к портландцементу и использованы для образования раствора.

2.2.2. Приготовление и отверждение строительного раствора

Образцы строительного раствора были приготовлены в соответствии со стандартами ASTM C109.Образцы строительных растворов готовили партиями, и каждая партия заполняла три трехрядные металлические формы. Текучесть раствора, приготовленного из смесей портландцемента и кальцинированных глин и пуццолана, достигалась с помощью высокодисперсного восстановителя воды. В таблице 2 представлены пропорции цементной смеси и системы цемент-пуццолан. Отверждение образцов раствора проводили на водяной бане, насыщенной известью, в течение 3, 7 и 28 дней.

107 30635 30635 30635

Mix Содержание (%) w / b Масса (г) HRWR (%)33 Flow
Цемент Глина Поццо Песок Вода

Control 100 0 0.485 740 0 2035 359 0,00 107
10P800 90 10 0,485 666 746 0,485 666 746 0,485 666 746
20P800 80 20 0,485 592 148 2035 359 0,32 114
114
114
85 518 222 2035 359 0,34 105
40P800 60 40 0,485 446 9034 0,485 446 9034 9034 107

2.
2.3. Определение ЯМР MAS

ЯМР 27 Al определяли на связующей пасте. Связующая паста, содержащая кальцинированную глину, была приготовлена ​​на основе оптимального соотношения растворной смеси.Связующая паста нормальной консистенции была приготовлена ​​в соответствии с ASTM C187. Консоль Tecmag Apollo (Хьюстон, Техас) с магнитом 8,45 Т и самодельным одноканальным датчиком ЯМР с широким отверстием 4 мм использовалась для определения спектров 27 Al. Для каждого анализа брали около 90 мг образца, и сигналы представляли как значение химического сдвига, δ : ppm. Частота 27 Al Larmor составляла 93,074 МГц. Спектры 27 Al были получены с частотой вращения MAS, последней задержкой и длительностью импульса 90 °: 8 кГц, 1 с и 2.5 μ с соответственно. Нитрат алюминия [Al (NO 3 )] использовали в качестве эталонного соединения для 27 Al. Все эксперименты проводились при температуре окружающей среды без поправок на нагрев образцов.

3. Результаты и обсуждение
3.1. Early Strength

На рисунке 2 представлены результаты ранней прочности строительных растворов, отвержденных через 3 и 7 дней, а также поздней прочности, отвержденных в течение 28 дней. Замена портландцемента на 20% прокаленной глины при 800 ° C (20P800) позволила достичь максимальной прочности.Значения прочности 20П800 на 3 и 7 сутки превышали контрольный раствор на 7% и 23% соответственно. Это показывает, что включение пуццоланового материала повлияло на реакционную способность и характеристики цемента в раннем возрасте. В раннем возрасте 3 и 7 дней характеристики раствора 20Р800 указывают на то, что кальцинированный материал в портландцементе ведет себя как наполнитель, ускоряя гидратацию портландцемента. Ускорение процесса гидратации приводит к образованию большего количества гидроксида кальция, которое вступает в реакцию с активными фазами кремнезема и алюмината пуццоланов с образованием вторичных гидратов алюмосиликата кальция в раннем возрасте.Образование этих вторичных продуктов улучшает силовые характеристики.


20П800 снова достиг максимальной прочности через 28 дней. Показатель прочности 20П800 превышал контрольный раствор примерно на 8%. Увеличение прочности 20П800 можно объяснить пуццолановой реакцией [14]. Пуццолановая реакция происходит между фазами активного диоксида кремния и алюмината из прокаленного материала и гидроксида кальция, полученного при гидратации портландцемента. После 20% замены цемента кальцинированным материалом прочность портландцемента снизилась.Это показывает, что 20% прокаленного материала было достаточно для реакции с известью, полученной из гидратированного цемента. Уменьшение прочности более чем на 20% означает, что меньше извести вступает в реакцию с большим количеством силикатов, обнаруженных в кальцинированном материале, что делает реактивный силикат избыточным. В таких случаях не будет образования вторичных силикатных гидратов (CSH), которые могут повысить прочность.

3.2. Исследования MAS ЯМР

На рисунке 3 представлены результаты MAS ЯМР Ss 27 Al контрольного цементного теста и цементного теста, содержащего пуццолан (20P800).На рисунке показаны два отдельных пика при химическом сдвиге 68,14 и 7,86 частей на миллион. Сдвиги при 68,14 и 7,86 м.д. указывают на тетраэдрическое () и октаэдрическое () скоординированное окружение соответственно. Обычно для образцов гидратированного цемента наблюдается химический сдвиг из тетраэдрической среды в октаэдрическую из-за поляризации гидратированных материалов. Исследования Skibsted et al. [15] и Андерсон и др. [16] показали, что химический сдвиг между 8 и 11,8 ppm соответствует моносульфатам, тогда как химический сдвиг между 66 и 72 ppm соответствует замене алюминия Si в тетраэдрическом окружении ().Рисунки (a, b и c) показывают, что включение кальцинированных материалов в цемент привело к образованию большего количества фаз Al в тетраэдрической среде, которые переходили в щелочной раствор с образованием более стабильных моносульфатных фаз в октаэдрической среде. Рисунки 3 (a) и 3 (b) показали, что кальцинированная глина ускоряла гидратацию цемента в первые 3 и 7 дней, подтверждая эффект наполнителя кальцинированного материала. Это может быть подтверждено полученными значениями интенсивности, которые составляют приблизительно 114 и 118% в окружающей среде по сравнению со 100% контрольной смеси.В более позднем возрасте 28 дней интенсивность связующей пасты 20П800 выросла примерно до 154% по сравнению с контролем. Повышенное образование стабильных фаз алюмината и моносульфата кальция в октаэдрическом окружении в более позднем возрасте 28 дней указывает на возникновение пуццолановой реакции. Эффект пуццолановой реакции улучшает прочностные свойства бетона. Это также подтверждает прочностные характеристики 20П800 через 28 дней.

4. Выводы

В ходе исследования изучались ранние и поздние прочностные свойства систем портландцемент и портландцемент-кальцинированная глина.Полученные оптимальные значения прочности на сжатие были подтверждены результатами исследований 27 Al MAS ЯМР. По результатам исследования были сделаны следующие выводы: (1) Глина, охарактеризованная MAS ЯМР и анализом размера частиц, представляла собой низкосортную каолиновую глину 1: 1. (2) Оптимальная прочность на сжатие, полученная для замены портландцемента. цемент с прокаленной глиной по весу составлял 20%. (3) Прокаленный глиняный материал имел как наполнитель, так и пуццолановый эффект. (4) Повышение прочности пуццолановых растворов по сравнению с контролируемыми растворами было связано с ростом стабильных моносульфатов при октаэдрическая среда.

Конкурирующие интересы

Авторы заявляют, что у них нет конкурирующих интересов.

Авторские права

Авторские права © 2016 Марк Бедиако и др. Это статья в открытом доступе, распространяемая по лицензии Creative Commons Attribution License, которая разрешает неограниченное использование, распространение и воспроизведение на любом носителе при условии правильного цитирования оригинальной работы.

Цемент, как он производится

Цемент, или портландцемент, определяется как «гидравлический цемент, полученный путем обжига смесь извести и глины, чтобы сформировать клинкер, затем измельчение клинкера в порошок.Зеленовато-серый порошок состоит в основном из силикатов кальция, кальция алюминаты и ферриты кальция. При смешивании с водой (гидратированной) он затвердевает в искусственный камень, похожий на портлендский камень «. Портлендский камень желтый известняк с острова Портленд в Великобритании.

Исторически сложилось так, что появление цемента восходит к ранней Римской империи, и способствовал строительству великих сооружений Римской империи. Варьируя количество и типы одних и тех же основных ингредиентов, цементируйте могут быть получены различные свойства.Путем дальнейшего изменения ингредиентов производится еще больше различных цементов.

* «Производство цемента — это основная переработка отобранного и подготовленного минерала. сырье для производства синтетической минеральной смеси (клинкера), которая может быть измельчены до порошка определенного химического состава и физических свойства цемента ». Производство цемента, как и многие другие производственные процессы, начинаются в шахте, где сырье, такое как известняк, кремнезем, получают алюминаты, железистые минералы и др.Некоторые типичные материалы для карбоната кальция при производстве цемента используются известняк, мел, мрамор, мергель и устрицы. Некоторые типичные материалы, используемые для оксида алюминия при производстве цемента используются сланец, глина, шлаки, летучая зола, бокситы, глинозем. технологические отходы и гранит. Некоторые типичные материалы, используемые для кремнезема в цементе производством являются песок, глина, аргиллит, сланец, шлак и летучая зола. Немного типичные материалы, используемые для производства железа при производстве цемента, — это железная руда, пыль дымовых газов доменных печей, колчеданный клинкер, прокатная окалина и летучая зола.


Шаровая мельница на цементном заводе


Общие методы добычи — это разработка открытых месторождений, а некоторые силикаты — добыча полезных ископаемых. такие как песок, обычно добываются земснарядами из озер, рек и водные пути. Есть несколько подземных известняковых шахт, но большинство из них ямы на поверхности. Цементные заводы обычно расположены в центре минералы, необходимые для производства цемента, что позволяет сэкономить на транспортных расходах и удешевляет цемент.Как только рудный материал будет использоваться для цемент добыт, доставлен на дробильно-сортировочный завод, где он измельчается и просеивается для получения частиц желаемого размера. Руда из шахт обычно измельчается примерно до дюйма и хранится в грубый запас. Оттуда дюймовая руда обычно уменьшается до порошок в большой шаровой мельнице.



Иногда сырье подвергается влажному измельчению в шаровой мельнице путем добавив воды и образовав кашицу.В любом случае, влажная или сухая, земля порошок затем смешивается с использованием «Секретной смеси химика», которую можно тщательно охраняемого «рецепта», а затем транспортируются во вращающуюся печь для термическая обработка. Во вращающейся печи сначала нагнетается углекислый газ. карбонатов кальция, затем сырье плавится при температура где-то около 2700 градусов F. Разряд из обжиговую печь называют клинкером, так как она напоминает небольшие камни или остатки доменная печь.Клинкер — это цемент в «комковом» виде. Частица диапазон размеров клинкера составляет от примерно 2 дюймов до примерно 10 меш. Затем клинкер измельчается в шаровой мельнице и отправляется пользователям в виде Портландцемент.

Есть пять основных типов цемента.
Во-первых, цемент типа 1 — это цемент общего назначения, обычно используемый в строительстве.

Цемент типа 2 по-прежнему является обычным цементом, но он обладает стойкостью к сульфатам и теплоте гидратации.

Цемент типа 3 обладает высокими прочностными свойствами на ранних стадиях жизнь цемента. То есть сразу после отверждения.

Цемент типа 4 используется там, где желательны очень низкие температуры увлажнения.

И цемент типа 5 используется там, где требуется очень высокая сульфатостойкость.

В Соединенных Штатах Американское общество испытаний материалов Американская ассоциация государственных служащих автомобильных дорог, American Concrete Институт, Инженерный корпус США, как правило, является основным двигателем сила стандартов и технических условий на качество и технологию цемента.

Бетон представляет собой смесь гравия, песка и цемента. Бетон НЕ цемент, но это сделано из цемента.

* — Промышленные минералы и камни 4-е издание

Вернуться на страницу информации о майнинге

Свяжитесь с нами
Авторские права ©
1994-2012
Mine-Engineer.Com
Все права защищены

Известь стабилизирует бедные почвы | Журнал Concrete Construction

Известь много лет использовалась для стабилизации дорожного полотна и аэродромов, но теперь известь также используется для стабилизации участков зданий.Известковая стабилизация используется в первую очередь для улучшения качества глинистых грунтов низкого качества с целью обеспечения надлежащей опоры земляного полотна, что является основным условием для хороших эксплуатационных характеристик бетонной плиты. Использование извести особенно ценно, когда встречаются экспансивные глины. Известно, что расширяющиеся глины растрескивают бетонные плиты или создают грубые швы, когда плиты поднимаются, а затем оседают во время влажных и сухих циклов. Известь решает эту проблему, во-первых, за счет снижения экспансивных свойств почвы, а во-вторых, за счет образования гидроизоляционного барьера, который помогает предотвратить попадание воды в нижележащие расширяющиеся грунты.Стабилизация извести — это, по сути, тип процесса химической стабилизации с использованием гашеной извести. Метод применим к тяжелым глинистым и илистым глинистым почвам, а также к пластичным заполнителям, таким как карьерный гравий. Реакция между известью и глиной по существу двоякая: во-первых, во время смешивания частицы глины объединяются в одну массу из-за обмена основания, образуя более крупный ил. Это снижает пластичность и разбухает, а также увеличивает рыхлость почвы. Также наблюдается выраженное подсушивающее действие.Во-вторых, после уплотнения известь вступает в реакцию с глиной с образованием цемента, который прочно связывает частицы почвы и значительно увеличивает прочность и стабильность почвы. Это также делает почву относительно непроницаемой для воды. Известковая стабилизация основного грунта может быть достигнута тремя способами: (1) обычная стабилизация — это включает разбрасывание извести, смешивание и уплотнение, а затем отверждение полученного известкового грунта. Конечный результат — хорошо зацементированный, стабильный слой, обычно толщиной 6 дюймов.(2) Модификация почвы — аналогична описанной выше, за исключением того, что используется меньше извести. Почва все равно будет улучшена, но в меньшей степени. (3) Последующая обработка — здесь целинная почва пропитывается известью на небольшую глубину. Однако почва не перемешивается и не уплотняется. Вместо этого известь вводится путем бурения, орошения траншей или нагнетания.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *