Общие свойства строительных материалов: Свойства строительных материалов — Свойства стройматериалов

Содержание

Свойства строительных материалов — Свойства стройматериалов

Свойства строительных материалов

Строительные материалы отличаются физическими и механическими свойствами.

Физические свойства

Физические свойства включают в себя следующие параметры: плотность, пористость, водопоглощение, влагоотдача, гигроскопичность, водопроницаемость, морозостойкость, теплопроводность, звукопоглощение, огнестойкость, огнеупорность и некоторые другие.

Плотность

Плотность материала бывает средней и истинной. Средняя плотность определяется отношением массы тела (кирпича, камня и т. п.) ко всему занимаемому им объему, включая имеющиеся в нем поры и пустоты, и выражается в соотношении кг/м2.

Истинная плотность —-это предел отношения массы к объему без учета имеющихся в них пустот и пор.

У плотных материалов, например у стали и гранита, средняя плотность практически равна истинной, у пористых (кирпич и т.

п.) меньше.

Пористость

Эта характеристика определяется степенью заполнения объема материала порами, которая исчисляется в процентах. Пористость влияет на такие свойства материалов, как прочность, водопоглощение, теплопроводность, морозостойкость и др.

По величине пор материалы разделяют на мелкопористые, у которых размеры пор измеряются в сотых и тысячных долях миллиметра, и крупнопористые (размеры пор — от десятых долей миллиметра до 1-2 мм). Пористость строительных материалов колеблется в широком диапазоне. Так, например, у стекла и металла она равна 0%, у кирпича пористость составляет 25-35%, у мипоры — 98%.

Влагоотдача

Это свойство материала характеризует способность терять находящуюся в его порах влагу. Влагоотдача исчисляется процентным количеством воды, которое материал теряет за сутки (при относительной влажности окружающего воздуха 60% и его температуре 20 °С).

Влагоотдача имеет большое значение для многих материалов и изделий, например стеновых панелей и блоков, которые в процессе возведения здания обычно имеют повышенную влажность, а в обычных условиях благодаря водоотдаче высыхают.

Вода испаряется до тех пор, пока не установится равновесие между влажностью материала стен и влажностью окружающего воздуха.

Водопоглощение

Водопоглощение — это способность материала впитывать и удерживать в своих порах влагу.

По объему водопоглощение всегда меньше 100%, а по массе может быть более 100% (например, у теплоизоляционных материалов). Насыщение материала водой ухудшает его основные свойства, увеличивает теплопроводность и среднюю плотность, уменьшает прочность.

Степень снижения прочности материала при предельном его водонасыщении называется водостойкостью и характеризуется коэффициентом размягчения.

Материалы с коэффициентом размягчения не менее 0,8 относят к водостойким. Их применяют в конструкциях, находящихся в воде, и в местах с повышенной влажностью.

Гигроскопичность

Гигроскопичность — это свойство пористых материалов поглощать влагу из воздуха. Гигроскопичные материалы (древесина, теплоизоляционные материалы, кирпичи полусухого прессования и др. ) могут поглощать большое количество воды. При этом увеличивается их масса, снижается прочность, изменяются размеры. Для некоторых материалов в условиях повышенной и даже нормальной влажности приходится применять защитные покрытия. А такие материалы, как кирпич сухого прессования, можно использовать только в зданиях м помещениях с пониженной влажностью воздуха.
Водопроницаемость

Водопроницаемостью называют способность материала пропускать воду под давлением. Эта характеристика определяется количеством воды, прошедшей при постоянном давлении в течение 1 ч через материал площадью 1 м2 и толщиной 1 м. К водонепроницаемым относятся особо плотные материалы (сталь, стекло, битум) и плотные материалы с замкнутыми порами (например, бетон специально подобранного состава).

Морозостойкость

Морозостойкость — это способность материала в насыщенном водой состоянии выдерживать многократное попеременное замораживание и оттаивание без снижения прочности и массы, а также без появления трещин, расслаивания, крошения.

Для возведения фундаментов, стен, кровли и других частей здания, подвергающихся попеременному замораживанию и оттаиванию, необходимо применять материалы, обладающие вышенной морозостойкостью. Плотные материалы, не имеющие пор материалы с незначительной открытой пористостью, с во-допоглощением не более 0,5% обладают морозостойкостью.

Теплопроводность

Теплопроводность — свойство материала передавать теплоту при наличии разности температур снаружи и внутри строения. Эта характеристика зависит от ряда факторов: природы и строения материала, пористости, влажности, а также от средней температуры, при которой происходит передача теплоты. Кристаллические и крупнопористые материалы, как правило, более теплопроводны, чем материалы, имеющие аморфное и мелкопористое строение. Материалы, имеющие замкнутые поры, обладают меньшей теплопроводностью, чем материалы с сообщающимися порами.

Теплопроводность однородного материала зависит от средней плотности: чем меньше плотность, тем меньше теплопроводность и наоборот. Влажные материалы более теплопроводны, чем сухие, так как теплопроводность воды в 25 раз выше теплопроводности воздуха. От данного показателя зависит толщина стен и перекрытий отапливаемых зданий.

Звукопоглощение

Звукопоглощением называется способность материала ослаблять интенсивность звука при прохождении его через материал. Звукопоглощение зависит от структуры материала: сообщающиеся открытые поры поглощают звук лучше, чем замкнутые. Лучшими звукоизолирующими показателями обладают многослойные стены и перегородки с чередующимися слоями пористых и плотных материалов.

Огнестойкость

Огнестойкость — это свойство материалов противостоять действию высоких температур. По степени огнестойкости материалы делят на несгораемые, трудносгораемые и сгораемые. Несгораемые материалы (кирпич, бетон, сталь) под действием огня или высоких температур не воспламеняются, не тлеют и не обугливаются, но могут сильно деформироваться.

Трудносгораемые материалы (фибролит, асфальтовый бетон) тлеют и обугливаются, но после удаления источника огня эти процессы прекращаются.

Сгораемые материалы (дерево, рубероид, пластмассы) воспламеняются или тлеют и продолжают гореть или тлеть и после удаления источника огня.

Огнеупорность

Огнеупорность — свойство материала противостоять, не деформируясь, длительному воздействию высоких температур. По степени огнеупорности материалы делят на огнеупорные, выдерживающие действие температур до 1580 “С и выше (шамотный кирпич), тугоплавкие, выдерживающие действие температур 1350-1580 °С (тугоплавкий кирпич), легкоплавкие, размягчающиеся или разрушающиеся при температуре ниже 1350 “С (керамический кирпич).

Механические свойства

К механическим свойствам материала относят его прочность, упругость, пластичность, хрупкость, сопротивление удару и твердость.

Прочность

Прочностью называется способность материала проти-. востоять разрушению под воздействием внешних сил, вызывающих в нем внутренние напряжения.
Прочность материала характеризуется пределом прочно-; сти при трех видах воздействия на него — сжатии, изгибе и растяжении.

Упругость

Упругость — это способность материала после деформирования под воздействием каких-либо нагрузок принимать первоначальную форму и размеры. Наибольшее напряжение, при котором материал еще обладает упругостью, называется пределом упругости. К упругим материалам относят резину, сталь, древесину.

Твердость

Твердость — способность материала сопротивляться проникновению в него другого, более твердого тела. Это свойство материалов важно при устройстве полов и дорожных покрытий.

Хрупкость

Хрупкость — свойство материала под действием внешних сил мгновенно разрушаться без заметной пластичной деформации.
К хрупким материалам относятся кирпич, природные камни, бетон, стекло и т. д.

Пластичность

Пластичность — свойство материала изменять под нагрузкой форму и размеры без образования разрывов и трещин и сохранять изменившиеся форму и размеры после удаления нагрузки. Это свойство противоположно упругости.

К пластичным материалам относят битум, глиняное тесто и др.

Сопротивление удару

Сопротивление удару — способность материала противостоять разрушению под действием ударных нагрузок. Плохо сопротивляются ударным нагрузкам хрупкие материалы.

Читать далее:
Механические свойства строительных материалов
Физические свойства строительных материалов
Характеристика строительных растворов
Характеристика некоторых вяжущих веществ
Характеристика некоторых строительных материалов


Основные свойства строительных материалов

Водостойкость строительного материала – это способность материала сохранять свою проектную прочность при насыщении водой. Степень снижения прочности строительного материала под действием воды называется коэффициентом размягчения. Материалы, имеющие коэффициент выше 0,8 считаются водостойкими и могут применяться в воде или в местах с повышенной влажностью.
Водостойкость строительных материалов – очень важный показатель именно для тех материалов, которые используются в воде или во влажных условиях. Некоторые материалы при насыщении водой могут увеличивать свои показатели по прочности, это обусловлено, прежде всего, химическим взаимодействием компонентов. Например, при насыщении водой цемент может превратиться в цементный камень. Водостойкость характеризуется коэффициентом размягчения kp = Rв/Rс, где Rв — прочность материала насыщенного водой, а Rс — прочность сухого материала. Меняется kp от 0 (размокающие глины) до 1 (металлы). 

Водопоглощение строительного материала – 

это способность материала впитывать и удерживать влагу. Измеряется водопоглощение отношением объема или массы впитанной влаги к объему или массе строительного материала:wm = (m2-m1)/m1*100%,wv = m2-m1/V*100%Где
m2 — масса материала в насыщенном водой состоянии, кг; 
m1 — масса материала в сухом состоянии, кг;
V — объем материала в естественном состоянии, м3. Существует масса примеров, когда влаги в материале больше чем самого материала. Это происходит в том случае, когда удельный вес материала меньше плотности воды.Практически всегда избыточное водопоглощение приводит к избыточному наличию воды в стройматериале, что ведет к изменению очень важных качеств строительного материала, таких как прочность и теплопроводность. 

Влагоотдача строительного материала – это способность материала отдавать влагу, находящуюся в порах. Так, например, штукатурные растворы, отдавая лишнюю влагу, существенно изменяют свои показатели по прочности, стеновые пенобетонные блоки впитывают влагу из растворов, а потом отдают ее в атмосферу. Чем выше влажность воздуха и меньше температура, тем хуже происходит влагоотдача. Измеряется влагоотдача в процентах влаги, отдаваемой стройматериалом при среднестатистической относительной влажности воздуха 60% и температуре +20 °С. 

Основные свойства строительных материалов.

Основные свойства

 строительных материалов.

 

Применяя тот или иной материал в строительстве, нужно знать его физико-механические свойства и учитывать те условия, в которых этот материал будет работать в строительной конструкции.

Основные свойства строительных материалов можно разделить на несколько групп.

К первой группе свойств относят физические свойства материалов : удельный вес, объёмный вес, плотность и пористость. От них в большой степени зависят другие важные  в строительном отношении свойства строительных материалов.

Вторую группу составляют свойства, характеризующие отношение строительного материала к действию воды и связанному с нею действию мороза : водопоглощение, влажность и отдача влаги, гигроскопичность, водопроницаемость, водо- и морозостойкость.

К третьей группе относятся механические свойства материалов : прочность, твёрдость, истираемость и др.

В четвёртую группу объединены свойства, характеризующие отношение материалов к действию тепла : теплопроводность, теплоёмкость, огнестойкость и огнеупорность. Помимо основных, различают ещё специальные свойства, присущие лишь отдельным видам строительных материалов.

Способность некоторых материалов сопротивляться разрушающему действию кислот, щелочей, солей и газов носит общее название химической (или коррозионной) стойкости.

Особую группу составляют так называемые технологические свойства, которые характеризуют способность материала подвергаться механической обработке. Например, древесина является материалом, легко поддающимся обработке. Строителю приходится считаться с этим свойством при выборе того или иного материала.

 

Физические и химические свойства

строительных материалов.

 

Удельным весом называется вес материала в единице объёма в плотном состоянии ( без пор ).

Объёмным весом называется вес единицы объёма материала в естественном состоянии ( вместе с порами ).

Объёмный вес рыхлых материалов ( песка, щебня ), определяемый без вычета пустот между их частицами, называют насыпным весом.

Плотностью материала называется степень заполнения его объёма твёрдым веществом, из которого материал состоит.

Пористостью называется отношение объёма пор к общему объёму материала.

По величине воздушных пор материалы разделяют на мелкопористые (поры имеют размеры в сотые и тысячные доли миллиметра) и крупнопористые (размеры пор от десятых долей миллиметра до 1 — 2 мм).

Более крупные поры в изделиях или полости между кусками рыхло насыпанного сыпучего материала ( песок, щебень, гравий ) называют пустотами.

Пористость строительных материалов колеблется в очень широких пределах — от 0 ( сталь. стекло ) до 90 % ( плиты из минеральной ваты ).

Материал с высокой пустотностью и пористостью часто бывает наиболее лучшим теплоизоляционным материалом.

Водопоглощением называется степень заполнения объёма материала водой.

Отношение прочности насыщенного водой материала к прочности его в сухом состоянии называется коэффициентом размягчения материала. Этот коэффициент является весьма важным показателем, так как он характеризует водостойкость материала, который в условиях работы в сооружении может подвергаться действию воды.

Коэффициент размягчения колеблется в пределах от нуля ( у глинянных необожжённых изделий до единицы ( у материалов, не изменяющих своей прочности от действия воды, — стекла, стали, битумов ).

Каменные материалы ( природные и искусственные ) нельзя применять в сырых местах, если коэффициент их размягчения меньше 0,8. Материалы с коэффициентом размягчения больше 0,8 называют водостойкими.

Влагоотдачей называется свойство материала отдавать воду при изменении условий в окружающей среде. Влагоотдачу выражают посредством скорости высыхания материалов — количеством воды ( а процентах от веса или объёма стандартного образца материала ), теряемым в сутки при относительной влажности окружающего воздуха 60 % и температуре 20 градусов.

Влажность материала — весовое содержание воды в материале строительных конструкций ( значительно ниже, чем их полное водопоглощение ).

Водопроницаемостью называется способность материала пропускать воду под давлением.

Морозостойкостью называется способность материала в насыщенном водой состоянии выдерживать многократное переменное замораживание и оттаивание без признаков разрушения и без значительного понижения прочности.

Плотные материалы без пор или с незначительной пористостью, поглощающие весьма мало воды, морозостойки.

Чтобы материал обладал морозостойкостью, коэффициент размягчения его должен быть не ниже 0,9.

Газопроницаемостью называется способность материала пропускать через свою толщу газ ( воздух ).

Газопроницаемость стен и других элементов сооружений можно значительно уменьшить, покрывая их масляными красками или битумными составами, а также производя их оштукатуривание.

Примеры : воздухопроницаемость кирпича —  0,35, цементно-песчанной штукатурки — 0,02, рубероида — 0,01.

Теплопроводностью называется способность материала передавать через свою толщу тепловой поток, возникающий вследствие разновидности температур на поверхностях, ограничивающих материал.

Степень теплопроводности очень важно знать для материалов. используемых при устройстве так называемых ограждающих конструкций зданий ( т.е. наружных стен, верхних перекрытий, полов в нижнем этаже ) и в особенности для теплоизоляционных материалов, назначение которых — способствовать сохранению тепла в помещениях и тепловых установках.

Коэффициент теплопроводности равен количеству тепла, в килокалориях, проходящего через стену толщиной 1 м, площадью 1 кв.м. за 1 час при разности температур на двух противоположных поверхностях стен в 1 град.

Теплопроводность материала зависит от степени его пористости, характера пор, вида материала, влажности, объёмного веса и средней температуры. при которой присходит передача тепла.

У пористых материалов тепловой поток проходит через их массу и через поры, наполненные воздухом. Теплопроводность воздуха очень низка ( 0,02 ), вследствие чего он оказывает большое термическое сопротивление прохождению теплового потока. Коэффициент теплопроводности сухих пористых материалов является промежуточной величиной между коэффициентами теплопроводности их вещества и воздуха. Чем больше пористость ( т.е. чем меньше объёмный вес материала ), тем меньше коэффициент теплопроводности.

Величина пор материала также оказывает влияние на коэффициент его теплопроводности. Мелкопористые материалы менее теплопроводны, чем крупнопористые. Материалы с замкнутыми порами имеют меньшую теплопроводность, чем материалы с сообщающимися порами. Это объясняется тем, что при крупных и сообщающихся порах в них возникает движение воздуха, сопровождающееся переносом тепла ( конвекция ) и повышением суммарного коэффициента теплопроводности.

В таблице 1 приведены коэффициенты теплопроводности теплоизоляционных материалов и для сравнения — коэффициенты теплопроводности некоторых других строительных материалов.

 

Таблица 1.

Материалы

Объёмный вес,

 кг/куб.м.

Коэффициент теплопроводности, ккал/м.час.град

Минеральная вата

200 - 400

0,05 — 0,08

Торфяные плиты

300

0,08

Древесноволокнистые плиты

300

0,07

Пробковые плиты

150

0,04

Поропласты

20

0,03

Асбозурит

400 - 800

0,08 — 0,20

Газостекло

250 - 300

0,05 — 0,07

Совелит

350 - 500

0,08 — 0,10

Гранит

2600

2,5

Кирпич

1800

0,7

Бетон

2000 — 2400

1,10 — 1,30

 

Теплоёмкостью называют свойство материала поглощать определённое количество тепла при нагревании.

Коэффициент теплоёмкости представляет собой количество тепла в килокалориях, необходимое для нагревания 1 кг. данного материала на 1 градус.

Природные и искусственные каменные материалы имеют коэффициент теплоёмкости в пределах от 0,18 до 0,22, лесные материалы — от 0,57 до 0,65. У металлов коэффициент теплоёмкости относительно не высок, например, у стали он равен 0,11.

Теплоёмкость материалов имеет значение в строительстве при проверке теплоустойчивости стен и перекрытий и расчёте подогрева материалов для зимних бетонных и каменных работ, а также при расчёте печей.

Под теплоустойчивостью стен и перекрытий понимают их способность сохранять на внутренней поверхности более или менее постоянную температуру, несмотря на колебания теплового потока вследствие неравномерной работы отопления. Суточные колебания температуры в жилых зданиях не должны превышать 6 градусов.

При топке печей у поверхностей стен или перекрытий, обращённых внутрь здания, создаётся запас тепла, вследствие чего внутри помещений температура значительно не повышается. По окончании топки запас тепла, накопленный в стенах и перекрытиях, расходуется на подогрев воздуха, чем и выравнивается в помещениях температура воздуха.

Для стен и перекрытий жилых и отапливаемых зданий желательно применять материалы с возможно более низким коэффициентом теплопроводности и возможно более высоким коэффициентом теплоёмкости. Такими свойствами обладают, в частности, лесные материалы, которые широко применяют для стен и перекрытий отапливаемых зданий.

Удельная теплоёмкость каменных материалов ( камень, кирпич, бетон, шлак, стекло и др. ) находится в пределах 0,18 — 0,22. Лесные и другие органические материалы имеют значительно большие коэффициенты теплоёмкости, например:

 

шевелин………………………………………..

0,45

 

древесина сосны и ели. …………………..

0,65

 

древесина дуба………………………………

0,57

 

рубероид……………………………………….

0,36

 

камышит……………………………………….

0,36

 

торфяные плиты…………………………….

0,50.

 

Огнестойкостью называется способность материалов выдерживать без разрушения действие высоких температур и воды ( при пожарах ). По огнестойкости строительные материалы делят на три группы : несгораемые, трудносгораемые и сгораемые.

Огнеупорностью называют свойство материала противостоять длительному воздействию высоких температур, не расплавляясь.

При устройстве различных отопительных установок ( печей, труб, при обмуровке котлов и пр.) используются строительные материалы, которые могут не только выдерживать действие высоких температур, но и нести определённую нагрузку при постоянной высокой температуре.

Такие материалы делят на три группы : огнеупорные, выдерживающие действие температур от 1580 градусов и выше ( шамот, динас и др.) ; тугоплавкие, выдерживающие действие температур выше 1350 до 1580 градусов ( гжельский кирпич ) ; легкоплавкие — с огнеупорностью ниже 1350 градусов (например, обыкновенный глиняный кирпич).

Химической стойкостью называется способность материалов сопротивляться действию кислот, щелочей, солей, растворённых в воде, и газов.

Большая часть строительных материалов не обладает стойкостью к действию кислот и щелочей. Весьма нестойко в этом отношении, например, дерево. Битумы отличаются нестойкостью к действию  концентрированных растворов щелочей, а многие природные каменные материалы — к действию кислот (например, известняки, мраморы, доломиты и др.). Многие вяжущие материалы также плохо противостоят действию кислот.

Высокой сопротивляемостью действию щелочей и кислот обладают керамические материалы с очень плотным черепком ( например, облицовочные плитки, плитки для полов, канализационные трубы ), специальный кирпич для устройства канализационных коллекторов, материалы на основе пластмасс (трубы, плёнки) и др.

Долговечность является весьма важным свойством строительных материалов. Под долговечностью понимают способность материалов сопротивляться всей сумме атмосферных воздействий в эксплуатационных условиях ( изменение температур, влажности, влияние кислорода и других газов, находящихся в воздухе ).

Процесс естественного изменения свойств материалов под действием атмосферных факторов называется старением материалов. Например, керамические материалы и естественные каменные материалы относятся к долговечным материалам, а древесина — в условиях повышенной влажности — к быстростареющим.

 

Механические свойства.

 

Прочность —  свойство материала сопротивляться разрушению под действием напряжений, возникающих от нагрузки или других факторов.

Прочность строительных материалов характеризуется так называемым пределом прочности при сжатии или пределом прочности при растяжении.

Пределом прочности называют напряжение, соответствующее нагрузке, вызывающей разрушение образца материала.

Твёрдостью называется способность материала сопротивляться проникновению в него постороннего более твёрдого тела. Это свойство материала не всегда соответствует их прочности. Материалы с разными пределами прочности при сжатии могут обладать примерно одинаковой твёрдостью.

Шкала твёрдости минералов.

Таблица 2

Показатель твёрдости.

Минерал

1

Тальк или мел

2

Каменная соль или гипс

3

Кальцит или ангидрит

4

Плавиковый шпат

5

Апатит

6

Ортоклаз

7

Кварц

8

Топаз

9

Корунд

10

Алмаз

 

Истираемостью называют способность материала уменьшаться в весе и объёме под действием истирающих усилий.

Сопротивлением удару называется способность материала сопротивляться ударным воздействиям.

Упругостью называется свойство материала восстанавливать свою первоначальную форму и объём после прекращения действия внешних сил, под воздействием которых форма материалов изменяется в той или иной мере. Первоначально форма может восстанавливаться полностью при малых нагрузках и частично при больших. В последнем случае в материале имеются остаточные деформации.

Деформацией называется изменение формы или объёма твёрдого тела.

Пределом упругости считают напряжение, при котором остаточные деформации впервые достигают некоторой малой величины, устанавливаемой техническими условиями на данный материал. Это наибольшее напряжение, по достижении которого материал практически получает только упругие деформации, т.е. исчезающие после снятия нагрузки.

Пластичностью называют способность материала под влиянием действующих на него усилий изменять свои размеры и форму без образования трещин и сохранять их после снятия нагрузки.

Помимо материалов пластичных ( битумы, глиняное тесто и др. ) имеются материалы хрупкие, которые разрушаются сразу ( без предварительной деформации ), как только действующие на них усилия достигают величины разрушающих нагрузок.

 

Строительные материалы. Основные понятия

ЧАСТЬ 1.

Физико-механические и механические свойства строительных материалов.


Механические свойства строительных материалов

В строительстве при возведении зданий и сооружений применяются различные строительные материалы и изделия из них. Основными строительными материалами в промышленном и гражданском строительстве являются цемент, бетон, кирпич, камень, дерево, известь, песок, черные металлы, стекло, кровельные материалы, пластик и другие.

В настоящее время строительная индустрия развивается в направлении создания теплосберегающих строительных материалов. Наиболее перспективными энергосберегающими материалами считаются ячеистые бетоны и бетоны на легких заполнителях.

Материалы, которые не требуют дальних перевозок, добываются или вырабатываются вблизи района строительства, называются местными строительными материалами. К таким материалам обычно относятся песок, гравий, щебень, известь и т. д.

Источником производства строительных материалов служат природные ресурсы страны, которые в качестве строительных материалов могут использоваться в природном состоянии (камень, песок, древесина) или в виде сырья, перерабатываемого на предприятиях промышленности строительных материалов (полистирол, керамзит).

При изучении строительных материалов их можно классифицировать на такие виды: природные каменные материалы, вяжущие материалы, строительные растворы, бетоны и бетонные изделия, железобетонные изделия, искусственные каменные материалы, лесные материалы, металлы, синтетические материалы и т. д.

Все строительные материалы имеют ряд общих свойств, но качественные показатели этих свойств различны.

Физико-механические и механические свойства строительных материалов

Данную группу свойств составляют, во-первых, параметры физического состояния материалов и, во-вторых, свойства, определяющие отношение материалов к различным физическим процессам. К первым относят плотность и пористость материала, степень измельчения порошков, ко вторым — гидрофизические свойства (водопоглощение, влажность, водопроницаемость, водостойкость, морозостойкость), теплофизические (теплопроводность, теплоемкость, температурное расширение) и некоторые другие. Технические требования на строительные материалы приведены в Строительных нормах и правилах (СНиП).

Истинной плотностью, puназывается масса единицы объема материала, взятого в плотном состоянии. Для определения удельного веса необходимо вес сухого материала разделить на объем, занимаемый его веществом, не считая пор. Вычисляется она по формуле:

p

u=m/Va

где m — масса материала, Va — объем материала в плотном состоянии.

Истинная плотность каждого материала — постоянная физическая характеристика, которая не может быть изменена без изменения его химического состава или молекулярной структуры.

Истинная плотность гранита 2,9 г/см3, стали — 7,85 г/см3, древесины — в среднем 1,6 г/см3. Так как большинство строительных материалов являются пористыми, то истинная плотность имеет для их оценки вспомогательное значение. Чаще пользуются другой характеристикой — средней плотностью.

Средней плотностью, pc называется масса единицы объема материала в естественном состоянии, т. е. вместе с порами и содержащейся в них влагой. Средняя плотность пористого материала, как правило,  меньше истинной. Отдельные материалы, такие как сталь, стекло, битум, а также жидкие, имеют практически одинаковые истинную и среднюю плотности. Среднюю плотность вычисляют по формуле:

Средняя плотность ячеистого бетона (пенобетона) находится в пределах от 300 кг/м3 до 1200 кг/м3 (ГОСТ 25485 — 89), а полистиролбетона от 150 кг/м3 до 600 кг/м3 (ГОСТ Р 51263 — 99). Изделия (блоки) из этих строительных материалов легки в обращении (штабелировании, транспортировке, кладке).

p

c=m/Ve

где m — масса материала, Ve — объем материала.

Среднюю плотность сыпучих материалов — щебня, гравия, песка, цемента и др. — называют насыпной плотностью. В объем входят поры непосредственно в материале и пустоты между зернами.

Эту характеристику необходимо знать при расчетах прочности конструкций с учетом их собственного веса, а также для выбора транспортных средств при перевозках строительных материалов.

Относительная плотность, d — отношение средней плотности материала к плотности стандартного вещества. За стандартное вещество принята вода при температуре 4оС, имеющая плотность 1000 кг/м3.

Пористостью, П называется отношение объема пор к общему объему материала. Пористость вычисляется по формуле

Современные энергосберегающие строительные материалы обладают высокими показателями пористости (до 95%) и, соответственно, низкой теплопроводностью. Это связано с тем, что воздух имеет наименьшую теплопроводность.

П=(1 — p

c/pu)*100

где pc, pu — средняя и истинная плотности материала.

Пористость строительных материалов колеблется в широких пределах, начиная от 0 (сталь, стекло) до 95% (пенобетон).

Для сыпучих материалов определяется пустотность (межзерновая пористость). Истинная, средняя плотности и пористость материалов — взаимосвязанные величины. От них зависят прочность, теплопроводность, морозостойкость и другие свойства материалов. Примерные значения их для наиболее распространенных материалов приведены в таблице 1.

Таблица 1.

Наименование
Плотность, кг/м3Пористость, %Теплопроводность,
Вт / (м * оС)
истиннаясредняя
Гранит 2700 2500 7,4 2,8
Вулканический туф 2700 1400 52 0,5
Керамический кирпич        
— обыкновенный 2650 1800 32 0,8
— пустотелый 2650 1300 51 0,55
Тяжелый бетон 2600 2400 10 1,16
Пенобетон 2600 700 85 0,18
Полистиролбетон 2100 400 91 0,1
Сосна 1530 500 67 0,17
Пенополистирол 1050 40 96 0,03

Водопоглощением материала называется его способность впитывать и удерживать в своих порах воду. Оно определяется как разность весов образца материала в насыщенном водой и сухом состояниях и выражается в процентах от веса сухого материала (водопоглощение по массе) или от объема образца (водопоглащение по объему).

Водопоглощение определяют по следующим формулам:

Ячеистые бетоны (пенобетон, газобетон), как и бетоны на легких заполнителях (полистиролбетон, керамзитобетон) обладают невысокими показателями водопоглощения 6 — 8 %.

W

M=(mв— mc)/mc   и   Wo=(mв— mc)/V

где mв — масса образца, насыщенного водой, mc — масса образца, высушенного до постоянной массы, V — объем образца.

Между водопоглощением по массе и объему существует следующая зависимость:

W

o=WM*pc

Водопоглощение всегда меньше пористости, так как поры не полностью заполняются водой.

В результате насыщения материала водой его свойства существенно изменяются: уменьшается прочность, увеличивается теплопроводность, средняя плотность и т. п.

Влажность материала W определяется содержанием воды в материале в данный момент, поэтому процент влажности ниже, чем полное водопоглощение. Она определяется отношением воды, содержащейся в материале в момент взятия пробы для испытания, к массе сухого материала. Влажность вычисляется по формуле:

W=(m

вл— mc)/mc*100 

где, mвл, mс— масса влажного и сухого материала.

Водопроницаемостью называется способность материала пропускать воду под давлением. Водопроницаемость материала зависит от его пористости и характера пор. С водопроницаемостью сталкиваются при возведении гидротехнических сооружений, резервуаров для воды.

Обратной характеристикой водопроницаемости является водонепроницаемость — способность материала не пропускать воду под давлением. Очень плотные материалы (сталь, битум, стекло) водонепроницаемы.

Морозостойкостью называется способность материала в насыщенном водой состоянии выдерживать многократное попеременное замораживание и оттаивание без признаков разрушения и без значительного понижения прочности.

Разрушение происходит из-за того, что объем воды при переходе в лед увеличивается на 9%. Давление льда на стенки пор вызывает растягивающие усилия в материале.

Морозостойкость материалов зависит от их плотности и степени заполнения водой.

Образцы испытываемого материала, в зависимости от назначения, должны выдержать от 15 до 50 и более циклов замораживания и оттаивания. При этом испытание считается выдержанным, если на образцах нет видимых повреждений, потеря в весе не превышает 5%, а снижение прочности не превосходит 25%.

Морозостойкость имеет большое значение для стеновых материалов, которые подвергаются попеременному воздействию положительной и отрицательной температуры, и измеряется в циклах замораживания и оттаивания.

Теплопроводностью называется способность материала проводить тепло. Теплопередача происходит в результате перепада температур между поверхностями, ограничивающими материал.

Чем больше пористость и меньше средняя плотность, тем ниже коэффициент теплопроводности. Такой материал имеет большее термическое сопротивление, что очень существенно для наружных ограждающих конструкций (стен и покрытий). Материалы с малым коэффициентом теплопроводности называются теплоизоляционными материалами (минеральная вата, полистирол, пенобетон, полистиролбетон и др.) Они применяются для утепления стен и покрытий. Наиболее теплопроводными материалами являются металлы.

Значительно возрастает теплопроводность материалов с увлажнением. Это объясняется тем, что коэффициент теплопроводности воды составляет 0,58 Вт/(м*оС), а воздуха 0,023 Вт/(м*оС), т.е. превышает его в 25 раз. Коэффициенты теплопроводности отдельных материалов приведены в таблице 1.

Огнестойкостью называется способность материалов сохранять свою прочность под действием высоких температур. Сопротивление воспламенению определяется степенью возгораемости. По степени возгораемости строительные материалы делятся на несгораемые, трудносгораемые и сгораемые.

Полистиролбетон относится к слабогорючим материалам и имеет группу горючести Г1. Ячеистые бетоны не горючие материалы.

Несгораемые материалы не воспламеняются, не тлеют и не обугливаются. К ним относятся каменные материалы (бетон, кирпич, гранит) и металлы.

Трудносгораемые воспламеняются с большим трудом, тлеют или обугливаются только при наличии источника огня, например фибролитовые плиты, гипсовые изделия с органическим заполнением в виде камыша или опилок, войлок, смоченный в глиняном растворе, и т. п. При удалении источника огня эти процессы прекращаются.

Сгораемые материалы способны воспламеняться и гореть или тлеть после удаления огня. Такие свойства имеют все незащищенные органические материалы (лесоматериалы, камыш, битумные материалы, войлок и другие).

Огнеупорностью называют свойство материала противостоять длительному воздействию высоких температур, не расплавляясь и не размягчаясь. По степени огнеупорности материалы подразделяют на следующие группы: огнеупорные, тугоплавкие и легкоплавкие. Огнеупорные выдерживают температуру 1580оС и выше, тугоплавкие — 1350 — 1580оС, легкоплавкие — менее 1350оС. Огнеупорные материалы используются при сооружении промышленных печей, для обмуровки котлов и тепловых трубопроводов (огнеупорный кирпич, жаростойкий бетон и т. п.).

Механические свойства строительных материалов

К основным механическим свойствам материалов относят прочность, упругость, пластичность, релаксацию, хрупкость, твердость, истираемость и др.

Прочностью называется свойство материала сопротивляться разрушению и деформации от внутренних напряжений под действием внешних сил или других факторов (неравномерная осадка, нагревание и т.д.). Прочность материала характеризуют пределом прочности или напряжением при разрушении образца. При сжатии это напряжение определяется делением разрушающей силы на первоначальную площадь образца.

Различают пределы прочности материалов при сжатии, растяжении, изгибе, срезе и пр. Они определяются испытанием стандартных образцов на испытательных машинах.

Современные энергосберегающие конструкционные материалы, как правило, обладают достаточной прочностью на сжатие для возведения жилых помещений. Так, например, полистиролбетон плотностью 600 кг/м3 соответствует классу прочности В2. Ячеистый бетон плотностью 700 кг/м3 соответствует классу В2,5.

Важнейшим свойством бетона является прочность. Лучше всего он сопротивляется сжатию. Поэтому конструкции проектируют таким образом, чтобы бетон воспринимал сжимающие нагрузки. И только в отдельных конструкциях учитывается прочность на растяжение или на растяжение при изгибе.

Прочность при сжатии. Прочность бетона при сжатии характеризуется классом или маркой (которые определяют чаще всего в возрасте 28 суток). В зависимости от времени нагружения конструкций прочность бетона может назначаться и в другом возрасте, например 3; 7; 60; 90; 180 суток.

В целях экономии цемента, полученные значения предела прочности не должны превышать предел прочности, соответствующей классу или марке, более чем на 15%. Класс представляет собой гарантированную прочность бетона в МПа с обеспеченностью 0,95 и имеет следующие значения: Bb1 — Bb60, с шагом значений 0,5. Маркой называется нормируемое значение средней прочности бетона в кгс/см2 (МПа*10).

При проектировании конструкции чаще всего назначают класс бетона, в отдельных случаях — марку. Соотношения классов и марок для тяжелого бетона по прочности на сжатие приведены в таблице 2.

Таблица 2.
КлассBb, МПаМаркаКлассBb, МПаМарка
Bb3,5 4,5 Mb50 Bb30 39,2 Mb400
Bb5 6,5 Mb75 Bb35 45,7 Mb450
Bb7,5 9,8 Mb100 Bb40 52,4 Mb500
Bb10 13 Mb150 Bb45 58,9 Mb600
Bb12,5 16,5 Mb150 Bb50 65,4 Mb700
Bb15 19,6 Mb200 Bb55 72 Mb700
Bb20 26,2 Mb250 Bb60 78,6 Mb800
Bb25 32,7 Mb300      

На прочность бетона влияет ряд факторов: активность цемента, содержание цемента, отношение воды к цементу по массе (В/Ц), качество заполнителей, качество перемешивания и степень уплотнения, возраст и условия твердения бетона, повторное вибрирование.

Истираемость — способность материалов разрушаться под действием истирающих усилий.  Эта характеристика учитывается при назначении материалов для пола, лестничных ступеней и площадок дорог.

перейти к второй части

Авторы статей «Строительная Лоция» сотрудники МП «ТЕХПРИБОР»
Векслер М.В.
Липилин А.Б.

С использованием материалов

Основы строительного дела.
Е.В. Платонов, Б.Ф. Драченко
ГОССТРОЙИЗДАТ УССР, Киев 1963.

Основные физические свойства строительных материалов

При выборе стройматериалов приходится учитывать множество факторов, среди которых самое важное место обычно занимают их физические характеристики. От них во многом зависит сфера применения, долговечность, прочность и устойчивость того или иного материала к воздействиям окружающей среды.

Среди основных свойств можно выделить следующие:

Плотность. Различают истинную плотность (теоретическая величина при условии отсутствия пор), относительную (по отношению к плотности воды) и насыпную (используется для сыпучих материалов). По плотности можно косвенно судить о прочности, теплопроводности и других свойствах того или иного материала. Кроме того, она является важным показателем при расчете прочности сооружения, определении нужного оборудования, особенностей транспортировки и хранения.

Пористость. Колеблется в очень широких пределах – примерно от 0,2 до 90% и более. Важно при этом не только процент пористости, но и ее характеристики – размер пор, их форма, характер распределения по материалу, структура и т.д. Пористость определяет такие важные свойства стройматериала, как теплопроводность, прочность, уровень звукопоглощения, водопроницаемость.

Гигроскопичность. Представляет собой показатель способности того или иного стройматериала поглощать воду (а именно – водяные пары) из воздуха и конденсировать ее.  Зависит от пористости, а также от температуры и влажности окружающей среды, рассчитывается отношением поглощенной влаги (массы, «впитанной» при влажности воздуха 100% и температуре +20 0С) к массе сухого материала.

Влажностные деформации. Описывают изменение объема материала и его размеров при колебаниях его влажности: при уменьшении этот процесс носит название усадка, при увеличении – набухание.

Водопроницаемость. Этот показатель указывает на то, сколько воды под определенным давлением способна пропустить поверхность 1 кв. м за 1 секунду. В некоторых случаях гораздо более важным считается показатель водонепроницаемости, особенно для кровельных материалов, труб и т.д.

Морозостойкость. Очень важная характеристика, особенно для регионов с суровым климатом. По ней можно определить, как поведет себя стройматериал, насыщенный водой, при попеременном замораживании и оттаивании.

Также следует отметить ряд свойств, так или иначе связанных с температурой, а именно – теплопроводность, огнестойкость, теплоемкость, термическую стойкость.

Вопросы по теме «Общие свойства строительных материалов»

I. Какое свойство строительных материалов называют:

  1. средняя плотность, истинная плотность, насыпная плотность,
  • в каких единицах определяется плотность материалов,
  • какова средняя плотность тяжёлого бетона, стали, кирпича, древесины и др.?
  • каково соотношение между средней и истинной плотностью (больше, меньше, равны)?
  1. пористость, как определяется (что надо знать для определения пористости),
  2. пустотность, как определяется (что надо знать для определения пустотности),
  3. коэффициент плотности, как определяется,
  4. водопоглощение, как определяется
  • от чего зависит водопоглощение материала,
  • как определяется коэффициент водостойкости,
  1. водонасыщение, как определяется,
  2. влажность, как определяется,
  3. гигроскопичность
  4. водонепроницаемость,
  • каким показателем определяется для бетона,
  1. морозостойкость,
  • что означает запись F 50 …. .F 1000,
  1. теплопроводность, каким показателем определяется,
  • коэффициенты теплопроводности каких материалов Вы знаете,
  • как изменяется теплопроводность при изменении влажности?
  1. теплоёмкость, каким показателем определяется,
  2. температурное расширение, каким показателем определяется,
  3. теплостойкость: приведите примеры
  4. огнестойкость, степени огнестойкости,
  5. огнеупорность,
    • какие материалы относятся к огнеупорным, к тугоплавким, легкоплавким,
    1. прочность,
    • какие виды испытаний на прочность Вы знаете,
    • в каких единицах определяется прочность,
    • что такое напряжение,
    • что такое предел прочности,
    • прочности каких материалов Вы знаете,
    • что такое коэффициент конструктивного качества,
    1. твёрдость,
    • каким показателем определяется твёрдость каменных материалов,
    • стойкость при истирании, каким показателем определяется истираемость каменных материалов,
    1. стойкость при ударе, метод определения,
    2. износостойкость, метод определения,
    3. вязкость, примеры вязких материалов,
    4. пластичность, примеры пластичных материалов,
    5. упругость, примеры упругих материалов,
    6. хрупкость, примеры хрупких материалов

    II. Назовите технологические свойства.

    III. Назовите химические свойства.

    IV. Назовите эксплуатационные свойства.

    V. Назовите конструкционные свойства.

    Основныe строительные материалы

    в промышленном и гражданском строительстве: цемент, бетон, кирпич, камень, дерево, известь, песок, чёрные металлы, стекло, кровельные материалы, пластик и другие.

    Источник производства строительных материалов
    = природные ресурсы страны:

    • в природном состоянии (камень, песок, древесина)
    • в виде сырья, перерабатываемого на предприятиях промышленности строительных материалов (полистирол, керамзит).

    Классификация строительных материалов

    • природные каменные материалы,
    • вяжущие материалы,
    • строительные растворы,
    • бетоны и бетонные изделия,
    • железобетонные изделия,
    • искусственные каменные материалы,
    • лесные материалы,
    • металлы,
    • синтетические материалы и т. д.

    Свойства строительных материалов
    Физико-механические свойства:

    1. Параметры физического состояния материалов:

    • плотность
    • пористость материала
    • степень измельчения порошков

    2. Свойства, определяющие
    отношение материалов к различным физическим процессам:

    • гидрофизические (водопоглощение, влажность,   водопроницаемость, водостойкость, морозостойкость),
    • теплофизические (теплопроводность, теплоемкость, температурное расширение)

    Строительные материалы и их свойства

    В строительстве при возведении зданий и сооружений применяются различные строительные материалы и изделия из них. Основными строительными материалами в промышленном и гражданском строительстве являются цемент, бетон, кирпич, камень, дерево, известь, песок, чёрные металлы, стекло, кровельные материалы, пластик и другие.
    Источником производства строительных материалов служат природные ресурсы страны, которые в качестве строительных материалов могут использоваться в природном состоянии (камень, песок, древесина) или в виде сырья, перерабатываемого на предприятиях промышленности строительных материалов (полистирол, керамзит).
    При изучении строительных материалов их можно классифицировать на такие виды: природные каменные материалы, вяжущие материалы, строительные растворы, бетоны и бетонные изделия, железобетонные изделия, искусственные каменные материалы, лесные материалы, металлы, синтетические материалы и т. д.
    Все строительные материалы имеют ряд общих свойств, но качественные показатели этих свойств различны.
    Физико-механические свойства составляют, во-первых, параметры физического состояния материалов и, во-вторых, свойства, определяющие отношение материалов к различным физическим процессам. К первым относят плотность и пористость материала, степень измельчения порошков, ко вторым — гидрофизические свойства (водопоглощение, влажность, водопроницаемость, водостойкость, морозостойкость), теплофизические (теплопроводность, теплоемкость, температурное расширение) и некоторые другие. Технические требования на строительные материалы приведены в Строительных нормах и правилах (СниП).

    Вопросы к теме:

    1. Какие основные строительные материалы вы знаете?
    2. Откуда происходят строительные материалы?
    3. Какие свойства материала определяют его физическогое состояние?
    4. Какие свойства материала определяют его отношение к различным физическим процессам?

     

    Свойства строительных материалов, используемых в строительстве, и их значение

    🕑 Время чтения: 1 минута

    Строительные материалы или строительные материалы являются основным требованием в этот современный век технологий. Есть много видов строительных материалов, используемых для различных строительных работ.

    Свойства строительных материалов Чтобы материал можно было рассматривать как строительный, он должен обладать необходимыми инженерными свойствами, пригодными для строительных работ. Эти свойства строительных материалов определяют его качество и производительность, а также помогают принимать решения о применении этого материала. Такие свойства строительных материалов классифицируются следующим образом.
    • Физические свойства
    • Механические свойства
    • Химические свойства
    • Электрические характеристики
    • Магнитные свойства
    • Тепловые свойства

    Физические свойства строительных материалов

    Это свойства, необходимые для оценки качества и состояния материала без какой-либо внешней силы.Физические свойства инженерных материалов следующие.
    • Насыпная плотность
    • Пористость
    • Прочность
    • Плотность
    • Индекс плотности
    • Удельный вес
    • Огнестойкость
    • Морозостойкость
    • Атмосферостойкость
    • Устойчивость к растрескиванию
    • Водопоглощение
    • Водопроницаемость
    • Гигроскопичность
    • Коэффициент размягчения
    • Огнеупорность

    Насыпная плотность строительных материалов

    Объемная плотность — это отношение массы к объему материала в его естественном состоянии, включая пустоты и поры. Выражается в кг / м 3 . Объемная плотность влияет на механические свойства материалов, такие как прочность, теплопроводность и т. Д. Значения объемной плотности некоторых конструкционных материалов приведены ниже.
    Строительный материал Насыпная плотность (кг / м 3 )
    Кирпич 1600–1800
    Песок 1450–1650
    Сталь 7850
    Тяжелый бетон Легкий бетон 1800–2500 500–1800
    Гранит 2500–2700

    Пористость строительных материалов

    Пористость дает объем материала, занятого порами.Это отношение объема пор к объему материала. Пористость влияет на многие свойства, такие как теплопроводность, прочность, насыпная плотность, долговечность и т. Д.

    Прочность строительных материалов

    Свойство материала противостоять комбинированному воздействию атмосферных и других факторов известно как долговечность материала. Если материал более прочный, то он пригодится дольше. Стоимость обслуживания материала зависит от долговечности.

    Плотность строительных материалов

    Плотность — это отношение массы материала к его объему в однородном состоянии.Практически все физические свойства материала зависят от его плотности. Ниже приведены значения плотности некоторых строительных материалов.
    Материал Плотность (кг / м 3 )
    Сталь 7800–7900
    Кирпич 2500-2800
    Гранит 2600–2900

    Индекс плотности

    Отношение объемной плотности материала к его плотности называется индексом плотности. Следовательно, он дает объем твердого вещества в материале. В природе полностью плотный материал недоступен, поэтому индекс плотности всегда меньше 1 для любого строительного материала.

    Удельный вес строительных материалов

    Удельный вес — это отношение массы данного вещества к массе воды при 4 o C для равных объемов. Удельный вес некоторых материалов указан ниже.
    Материал Удельный вес
    Сталь 7.82
    Чугун 7,20
    Алюминий 2,72

    Огнестойкость строительных материалов

    Способность противостоять огню, не изменяя своей формы и других свойств. Огнестойкость материала проверяется совместным воздействием воды и огня. Огнестойкие материалы должны обеспечивать большую безопасность в случае пожара.

    Морозостойкость

    Способность материала противостоять замораживанию или оттаиванию называется морозостойкостью.Это зависит от плотности и насыпной плотности материала. Более плотные материалы будут иметь большую морозостойкость. Влажные материалы обладают низкой морозостойкостью, при замерзании они теряют прочность и становятся хрупкими.

    Устойчивость к атмосферным воздействиям

    Свойство материала противостоять всем атмосферным воздействиям без потери прочности и формы. Выветривание влияет на долговечность материала. Например, коррозия железа возникает из-за атмосферных воздействий. Чтобы противостоять этому красочный слой предусмотрен.

    Сопротивление растрескиванию

    Способность материала безотказно выдерживать определенное количество циклов резких колебаний температуры называется сопротивлением растрескиванию. Это зависит от коэффициента линейного расширения.

    Водопоглощение

    Способность материала поглощать и удерживать воду известна как водопоглощение. Выражается в% от веса сухого материала. Это зависит от размера, формы и количества пор материала.

    Водопроницаемость

    Способность материала пропускать воду через себя называется водопроницаемостью.Плотные материалы, такие как стекло, металл и т. Д., Называются непроницаемыми материалами, которые не могут пропускать воду через них.

    Гигроскопичность

    Гигроскопичность — это свойство материала поглощать водяной пар из воздуха. Это зависит от относительной влажности, пористости, температуры воздуха и т. Д.

    Коэффициент размягчения

    Коэффициент размягчения материала — это отношение прочности на сжатие насыщенного материала к его прочности на сжатие в сухом состоянии. Это влияет на прочность водопоглощающих материалов, таких как грунт.

    Огнеупорность

    Свойство материала, который не может плавиться или терять форму при длительном воздействии высоких температур (1580 o C и более). Пример: огнеупорная глина — высокоогнеупорный материал.

    Механические свойства строительных материалов

    Механические свойства материалов выясняются путем приложения к ним внешних сил. Это очень важные свойства, которые отвечают за поведение материала при его работе. Механические свойства:
    • Прочность
    • Твердость
    • Эластичность
    • Пластичность
    • Хрупкость
    • Усталость
    • Ударная вязкость
    • Устойчивость к истиранию
    • Ползучесть

    Прочность строительных материалов

    Способность материала противостоять разрушению, вызванному действующими на него нагрузками, называется прочностью.Нагрузка может быть сжимающей, растягивающей или изгибающей. Он определяется делением предельной нагрузки, воспринимаемой материалом, на площадь его поперечного сечения. Прочность — важное свойство любых строительных материалов. Итак, чтобы обеспечить максимальную безопасность по прочности, для материалов предусмотрен коэффициент запаса прочности, который выбирается в зависимости от характера работ, качества материала, экономических условий и т. Д.

    Твердость строительных материалов

    Свойство материалов противостоять царапинам телом пастуха. Шкала MOHS используется для определения твердости материалов. Твердость наиболее важна при выборе конкретного заполнителя. Это также влияет на удобоукладываемость.

    Упругость строительных материалов

    Способность материала восстанавливать свою первоначальную форму и размер после снятия нагрузки называется эластичностью, а материал называется эластичным материалом. Идеально эластичные материалы подчиняются закону Гука, согласно которому напряжение прямо пропорционально деформации. Что дает модуль упругости как отношение единичного напряжения к единичной деформации.Чем выше значение модуля упругости, тем меньше деформации.

    Пластичность

    Когда к материалу прилагается нагрузка, если он подвергается остаточной деформации без трещин и сохраняет эту форму после снятия нагрузки, тогда говорят, что это пластичный материал, и это свойство называется пластичностью. Они придают устойчивость к изгибу, ударам и т. Д. Примеры: сталь, горячий битум и т. Д.

    Хрупкость

    Когда материал подвергается нагрузке, если он внезапно выходит из строя, не вызывая какой-либо деформации, он называется хрупким материалом, и это свойство называется хрупкостью. Примеры: бетон, чугун и т. Д.

    Усталость

    Если материал подвергается повторяющимся нагрузкам, то разрушение происходит в некоторой точке, которая ниже точки разрушения, вызванной постоянными нагрузками. Такое поведение известно как утомляемость.

    Прочность при ударе

    Если материал подвергается внезапным нагрузкам и претерпевает некоторую деформацию, не вызывая разрыва, это называется ударной вязкостью. Обозначает прочность материала.

    Сопротивление истиранию

    Потеря материала из-за трения частиц во время работы называется истиранием.Устойчивость материала к истиранию делает его долговечным и долговечным.

    Ползучесть

    Ползучесть деформация, вызванная постоянными нагрузками в течение длительного времени. Это зависит от времени и происходит очень медленно. В нормальных условиях это почти не заметно. Но в условиях высоких температур ползучесть происходит быстро.

    Химические свойства строительных материалов

    Свойства материалов против химического воздействия или химических комбинаций называются химическими свойствами. И они являются
    • Химическая стойкость
    • Коррозионная стойкость

    Химическая стойкость строительных материалов

    Способность строительных материалов противостоять воздействию химических веществ, таких как кислоты, соли и щелочи, известна как химическая стойкость.Подземные сооружения, сооружения у моря и т. Д. Следует строить с высокой химической стойкостью.

    Коррозионная стойкость

    Образование ржавчины (оксида железа) в металлах при воздействии атмосферы называется коррозией. Итак, металлы должны быть устойчивыми к коррозии. Для повышения коррозионной стойкости необходимо принять соответствующие меры. Иначе повредит всю конструкцию.

    Электрические свойства строительных материалов Свойства материала проводить или противостоять электричеству через них — это электрические свойства материала.Например, древесина имеет большое электрическое сопротивление, а нержавеющая сталь — хороший проводник электричества.

    Магнитные свойства строительных материалов

    Магнитные свойства материалов, такие как проницаемость, гистерезис и т. Д., Требуются в случае генераторов и т. Д., Железо является магнитным материалом, а алюминий — немагнитным материалом.

    Тепловые свойства строительных материалов

    • Тепловая мощность
    • Теплопроводность
    • Удельное термическое сопротивление
    • Удельная теплоемкость

    Теплоемкость строительных материалов

    Теплоемкость — это свойство материала поглощать тепло, и это необходимо для правильной вентиляции.Это влияет на термостойкость стен. Он выражается в Дж / Н o C и рассчитывается по формуле, приведенной ниже. Тепловая мощность, T = [H / (M (T 2 — T 1 ))] Где H = количество тепла, необходимое для повышения температуры с T 1 до T 2 T 1 = Начальная температура T 2 = Конечная температура M = Масса материала в N.

    Теплопроводность

    Количество тепла, передаваемого через единицу площади образца с единицей толщины в единицу времени, называется теплопроводностью.Измеряется в кельвинах. Это зависит от структуры материала, пористости, плотности и влажности. Высокопористые материалы, влажные материалы обладают большей теплопроводностью.

    Термическое сопротивление

    Это способность сопротивляться теплопроводности. И это величина, обратная теплопроводности. Когда его умножают на толщину материала, получается термическое сопротивление. Тепловое сопротивление грунта колеблется от 30 до 500 0 Кл-см / Вт.

    Удельная теплоемкость

    Удельная теплоемкость — это количество тепла, необходимое для нагрева 1 Н материала на 1 o C.Удельная теплоемкость полезна, когда мы используем материал в высокотемпературных областях. Ниже приведены значения удельной теплоемкости некоторых конструкционных материалов.
    Материал Удельная теплоемкость Дж / Н o C
    Сталь 0,046 х 10 3
    Дерево от 0,239 до 0,27 x 10 3
    Камень от 0,075 до 0,09 X 10 3
    Подробнее: Типы строительных материалов, используемых в строительстве, и их свойства

    Свойства строительных материалов — Constructor

    🕑 Время чтения: 1 минута

    Для постройки требуется несколько материалов.Материалы, используемые при строительстве инженерных сооружений, таких как здания, мосты и дороги, называются инженерными материалами или строительными материалами. К ним относятся кирпичи, древесина, цемент, сталь и пластмассы. Материалы, используемые в строительных конструкциях, можно изучить по следующим рубрикам.
    1. Традиционные материалы
    2. Альтернативные строительные материалы
    3. Композиционные материалы
    4. Умные материалы
    Инженеру необходимо знать свойства инженерных материалов.Правильный выбор материалов для строительной деятельности может быть сделан только тогда, когда свойства материала полностью изучены. Некоторые из наиболее важных свойств строительных материалов сгруппированы следующим образом.
    Группа Недвижимость
    Физические Форма, размер, плотность, удельный вес и т. Д.
    Механический Прочность, эластичность, пластичность, твердость, вязкость, пластичность, хрупкость, ползучесть, жесткость, усталость, ударная вязкость и т. Д.,
    Тепловой Теплопроводность, удельное тепловое сопротивление, теплоемкость и т. Д.
    Химическая промышленность Коррозионная стойкость, химический состав, кислотность, щелочность и т. Д.
    Оптический Цвет, отражение света, пропускание света и т. Д.,
    Акустический Звукопоглощение, передача и отражение.
    Физиохимический Гигроскопичность, усадка и разбухание из-за изменений влажности
    Определения
    • Плотность : определяется как масса на единицу объема.Выражается в кг / м 3 .
    • Удельный вес : отношение плотности материала к плотности воды.
    • Пористость : термин пористость используется для обозначения степени, в которой объем материала заполнен порами. Он выражается как отношение объема пор к объему образца.
    • Прочность : Прочность материала определяется как его способность противостоять действию внешней силы без разрушения.
    • Эластичность : Это свойство материала, которое позволяет ему восстанавливать свою первоначальную форму и размер после снятия внешней нагрузки.
    • Пластичность : Это свойство материала, которое позволяет образовывать остаточную деформацию.
    • Твердость : это свойство материала, которое позволяет ему противостоять истиранию, вдавливанию, механической обработке и царапинам.
    • Пластичность : Это свойство материала, которое позволяет ему в значительной степени вытягиваться или удлиняться до того, как произойдет разрыв.
    • Хрупкость : Это свойство материала, противоположное пластичности. Материал, имеющий очень небольшую способность к деформации, эластичный или пластичный, называется хрупким.
    • Ползучесть : Это свойство материала, которое позволяет ему при постоянной нагрузке деформироваться медленно, но постепенно в течение определенного периода.
    • Жесткость : это свойство материала, которое позволяет ему сопротивляться деформации.
    • Усталость : Термин «усталость» обычно относится к эффекту циклически повторяющегося напряжения.Материал имеет тенденцию разрушаться при меньшем уровне напряжения при повторной нагрузке.
    • Ударная вязкость : Ударная вязкость материала — это количество работы, необходимое для его разрушения на единицу его объема. Таким образом, это указывает на прочность материала.
    • Вязкость : это свойство материала, которое позволяет ему скручиваться, сгибаться или растягиваться под высоким напряжением перед разрывом.
    • Теплопроводность : это свойство материала, которое позволяет проводить тепло через его тело.Он определяется как количество тепла в килокалориях, которое будет протекать через единицу площади материала с единицей толщины в единицу времени, когда разница температур на его поверхностях также равна единице.
    • Коррозионная стойкость : Это свойство материала выдерживать воздействие кислот, щелочных газов и т. Д., Которые имеют тенденцию к коррозии (или окислению).

    Физические свойства строительных материалов или строительных материалов

    Строительные материалы используются в качестве основной части в строительной деятельности.В современном мире есть несколько строительных материалов, которые были созданы более экономичным способом. Прежде чем изобретать строительный материал, мы должны обратить внимание на его безопасные и экономичные аспекты. Прежде чем исследовать эти аспекты строительного материала, мы должны проверить его долгосрочные свойства. эти строительные материалы.

    Сегодня мы собираемся изучить свойства строительных материалов. Свойства строительных материалов можно разделить на физические свойства и механические свойства.Сначала мы узнаем о физических свойствах.

    Физические свойства строительных материалов

    1. плотность

    Как известно, это масса вещества, занятая на единицу объема. Её единица измерения — кг / м³.

    Плотность некоторых распространенных строительных материалов указана ниже

    Сталь = 7800

    Кирпич = 2600

    Гранит = 2800

    Дерево = 1500

    2. Насыпная плотность

    Насыпная плотность — еще одно важное свойство строительных материалов.Насыпная плотность измеряется в естественном состоянии, поэтому на них влияют поры и пустоты.

    Насыпная плотность — это масса, занимаемая единицей объема в ее естественном состоянии.

    В большинстве случаев насыпная плотность меньше плотности. Однако плотность и насыпная плотность почти одинаковы. Насыпная плотность является наиболее важным свойством строительных материалов. Насыпная плотность различных строительных материалов указана ниже.

    Сталь = 7800

    Кирпич = 1700

    Гранит = 2500

    Дерево = 600

    3.Удельный вес

    Третье свойство строительных материалов, о котором мы собираемся поговорить, — это удельный вес. Удельный вес определяется как вес, занимаемый на единицу объема. Разница между удельным весом и плотностью состоит в том, что плотность, умноженная на ускорение свободного падения, дает удельный вес. свойство строительных материалов пригодится для выяснения веса конструкции.

    Символ, используемый для обозначения удельного веса: «w»

    Итак, мы можем определить удельный вес с помощью уравнения

    w = ρ × g

    ρ = плотность вещества в кг / м³

    g = ускорение свободного падения в м / с²

    4.Удельный вес

    Удельный вес определяется как отношение плотности данного вещества к плотности воды при 4 ° C.Удельный вес является важным свойством строительного материала.

    Удельный вес — безразмерная величина. Удельный вес обозначается символом «G».

    G = плотность вещества / плотность воды

    Плотность воды составляет 1 г / куб.см или 1 кН / м³. Чтобы узнать свойства жидкостей, проверьте здесь.

    5.Поростной

    Как мы знаем, не все вещества являются однородными.Каждый материал состоит из твердых частиц и пустот. Пористость — важный термин в геотехнической инженерии.

    Пористость определяется как отношение объема пустот к объему твердых частиц.

    Обозначение пористости — «n»

    п = Vv / V

    Vv = Объем пустот

    V = Общий объем

    6. Соотношение пустот

    Коэффициент пустотности — еще одно важное свойство строительных материалов. Коэффициент пустотности — это отношение объема пустот к объему твердых частиц.

    Коэффициент пустот обозначается символом «e»

    e = Vv / VS

    Прочие свойства строительных материалов

    Атмосферостойкость

    Индекс плотности

    Проницаемость

    Огнестойкость

    Теплопроводность

    Теплопроводность

    Механические свойства строительных материалов

    Поскольку мы обсуждали физические свойства строительных материалов, сегодня мы узнаем о механических свойствах строительных материалов.Строительные материалы являются основными модулями в строительстве.

    Механические свойства строительных материалов

    Важными механическими свойствами строительных материалов являются прочность, растяжение, сжатие, изгиб, эластичность и пластичность. Мы узнаем, как каждое свойство влияет на строительные материалы.

    1. Прочность

    Прочность — это знакомое свойство каждого инженера. Прочность — это способность материала противостоять нагрузке, вызванной нагрузкой, действующей на строительный материал или конструкцию.

    Прочность зависит от типа нагрузок, действующих на конструкцию. Если нагрузка сжимающая, прочность бетона будет больше. Но в то же время, если нагрузка растягивающая, прочность будет меньше. Это связано с хорошим бетоном. на сжатие, но плохо на растяжение.

    Для зданий с более высокими когезионными свойствами прочность будет больше. Таким образом, мы можем сказать, что прочностные характеристики зависят от типа материалов и типа нагрузок, действующих на конструкцию, и других различных свойств.

    2.Твердость

    Твердость — еще одно важное свойство строительных материалов. Твердость определяется как способность материала сопротивляться проникновению в более твердые тела, называемые твердостью. Твердость измеряется по шкале Мооса. Шкала Мооса состоит из твердости 10 минералов, расположенных в порядке возрастания твердости. .

    Твердость измеряется на твердомере. Значение твердости показано ниже.

    3. эластичность

    Эластичность материала — это способность материала восстанавливать свои первоначальные размеры после приложения к нему нагрузки.В пределе упругости материал восстанавливает свои свойства, но после предела упругости материал начинает непрерывно деформироваться. Кривая зависимости напряжения от деформации более подробно объясняет упругие свойства материалов.

    Форма кривой напряжения-деформации для каждого материала разная. Отношение напряжения к деформации называется модулем упругости.

    4.Пластичность

    Пластичность — это состояние после эластичности. Пластичность — это способность материала изменять свою форму под нагрузкой без образования трещин.

    Примеры пластиковых материалов: сталь, медь и т. Д.

    Это механические свойства строительных материалов.

    Чтобы узнать о физических свойствах строительного материала, посетите здесь

    5 наиболее часто используемых строительных материалов | 2020

    В строительной отрасли используются различные строительные материалы для различных аспектов строительства дома. Архитекторы консультируются с инженерами-строителями по вопросам несущей способности материалов, с которыми они проектируют, и наиболее распространенными материалами являются бетон, сталь, дерево, кладка и камень.Каждый из них имеет разную прочность, вес и долговечность, что делает их подходящими для различных целей. Существуют национальные стандарты и методы испытаний, которые регулируют использование строительных материалов в строительной отрасли, так что на них можно положиться при обеспечении структурной целостности. Архитекторы также выбирают материалы исходя из стоимости и эстетики.

    Строительные материалы обычно делятся на две категории: природные и искусственные. Такие материалы, как камень и дерево, являются натуральными, а бетон, каменная кладка и сталь — искусственными.Но оба должны быть подготовлены или обработаны, прежде чем они будут использоваться в строительстве. Вот список строительных материалов, которые обычно используются в строительстве.

    1. Сталь

    Сталь

    — это металлический сплав железа и углерода, а часто и другого легирующего материала в его составе, чтобы сделать его более прочным и устойчивым к разрушению, чем железо. Нержавеющие стали устойчивы к коррозии и окислению из-за дополнительного хрома в их составе. Поскольку он настолько прочен по сравнению с его весом и размерами, инженеры-строители используют его в качестве структурного каркаса высоких современных зданий и крупных промышленных объектов.Некоторые из его качеств включают:

    • Сталь имеет высокие отношения прочности к массе и прочности.
    • Дорогой по сравнению с другими металлами. Инженеры-конструкторы могут проконсультироваться по выбору наиболее экономически эффективных размеров для использования в доме, чтобы выдержать фактическую нагрузку на здание.
    • Установка стали требует меньше времени, чем бетон.
    • Может быть установлен в любой среде.
    • Сталь может быть подвержена коррозии при неправильной установке или обслуживании.

    Хром, золото и серебро обычно используются для отделки или декорирования, поскольку им не хватает прочности на растяжение стали.

    2. Бетон

    Бетон — это композитный материал, состоящий из мелкого и крупного заполнителя (например, гравия, щебня, переработанного бетона и геосинтетических заполнителей), связанных жидким вяжущим, таким как цемент, который со временем затвердевает или затвердевает. Портландцемент является наиболее распространенным типом цемента и представляет собой мелкодисперсный порошок, получаемый путем нагревания известняковых и глиняных материалов в печи с добавлением гипса. Итак, бетон с портландцементом состоит из минерального заполнителя, связанного с портландцементом и водой.После смешивания цемент затвердевает или затвердевает, превращаясь в подобный камню материал, который мы считаем бетоном.

    Бетонные атрибуты:

    • Прочность зависит от смеси. Поставщики бетонной промышленности обычно предоставляют материалы, из которых изготовлен бетон, и проверяют бетонную смесь на ее прочность.
    • Бетон можно заливать в форму, чтобы принимать практически любую форму и затвердевать в материал, подобный камню.
    • Для отверждения требуется не менее семи дней, поэтому инженеры и архитекторы должны учитывать это время отверждения при составлении графиков строительства бетонных конструкций.
    • Универсальность, стоимость и прочность делают его идеальным материалом для фундамента дома. Бетонный фундамент дома является обычным делом, поскольку он может нести большую нагрузку и противостоять силам окружающей среды.
    • Для повышения прочности бетона на растяжение инженеры часто планируют армировать его стальными стержнями или стержнями (арматурой).

    3. Дерево

    Среди самых старых или, возможно, из самых старых строительных материалов, древесина использовалась в течение тысяч лет и обладает свойствами, которые делают ее идеальным строительным материалом — даже во времена инженерных и синтетических материалов.

    Для использования в строительстве деревянные детали строгаются на станке и разрезаются на стандартные размеры, такие как 2 дюйма x 4 дюйма (фактическое 1,5 x 3,5 дюйма) и 2 дюйма x 6 дюймов (фактическое значение 1,5 x 5,5 дюйма), чтобы их размеры могут быть точно внесены в планы строительства — это известно как размерная древесина. Древесину больших размеров обычно называют древесиной или балками, и ее часто используют для создания каркасов больших конструкций, таких как мосты и многоэтажные здания.

    Некоторые породы деревьев лучше подходят для одних целей и для использования в одних климатических условиях, чем другие.Строительные инженеры и архитекторы могут определить, какая древесина идеально подходит для строительного проекта.

    • Это легкодоступный и экономичный природный ресурс.
    • Древесина относительно легкая и ее легко стандартизировать по размеру.
    • Он обеспечивает хорошую изоляцию, поэтому многие архитекторы и инженеры любят использовать его для домов и жилых домов.
    • Древесина обладает высокой прочностью на растяжение — сохраняет свою прочность при изгибе — и очень прочна при вертикальном сжатии.
    • Из-за того, что древесина легкая и требует обработки под давлением, чтобы вступить в контакт с окружающей почвой, древесина является менее популярным выбором для фундаментов или стен подвала. (Однако постоянный деревянный фундамент, известный как PWFs, набирает популярность среди строителей благодаря теплому и уютному жилому помещению в подвале, которое они предлагают.) Чаще всего дома с деревянным каркасом обычно имеют железобетонный фундамент или фундамент из опор и балок.

    Выбор строительных материалов — один из бесчисленных аспектов строительного проекта. Узнайте больше о свойствах древесных материалов, используемых в строительстве. Онлайн-курс MT Copeland по древесным материалам , проводимый профессиональным строителем и мастером Джорданом Смитом.

    4. Камень

    Самый долговечный строительный материал из доступных — это тот, который использовался здесь тысячи лет: камень. Фактически, самые древние из сохранившихся в мире зданий построены из камня.У этого есть много преимуществ, хотя инженеры и архитекторы должны учитывать некоторые особенности при планировании здания из камня.

    • Сухие каменные стены из плотной породы использовались тысячи лет. Позже для их скрепления использовались различные формы строительного раствора.
    • Камень очень плотный, с ним трудно работать из-за его веса и сложности его перемещения.
    • Камень не является эффективным изолятором, так как его сложно сохранить в тепле.
    • Различные типы камней лучше всего подходят для разных целей. Например, сланец огнестойкий. Гранит — один из самых твердых камней и один из самых прочных доступных продуктов; инки использовали известняк или гранит, чтобы построить свои невероятно прочные здания.

    5. Кирпич / кладка

    При каменном строительстве используются отдельные элементы (например, кирпичи) для создания структур, которые обычно соединяются каким-либо строительным раствором. Исторически глиняные кирпичи формировались в форме и обжигались в печи.Самая прочная и часто используемая кладка — это бетонный блок, который можно армировать сталью. В конструкции кладки можно использовать стекло, кирпич и камень.

    • Кладка прочная и огнестойкая.
    • Этот метод строительства способен выдерживать сжимающие нагрузки, что делает его хорошим материалом для несущих стен.
    • Каменная кладка, армированная бетоном или в сочетании с железобетоном, может поддерживать многоэтажные здания и может быть экономичным выбором.
    • Хотя это эффективный метод для использования во многих типах строительства, прочная кладка может зависеть от качества раствора и изготовления.

    MT Copeland предлагает онлайн-классы на основе видео, которые дают вам фундамент в области строительства с использованием реальных приложений. Классы включают профессионально подготовленные видеоролики, преподаваемые практикующими мастерами, и дополнительные загрузки, такие как викторины, чертежи и другие материалы, которые помогут вам овладеть навыками.

    Типы строительных материалов, используемых в строительстве

    Вот несколько советов о том, как сделать ваш онлайн-курс беспроблемным.

    В строительстве используется много типов строительных материалов, таких как бетон, сталь, дерево и каменная кладка. Каждый материал имеет разные свойства, такие как вес, прочность, долговечность и стоимость, что делает его подходящим для определенных типов применений. Выбор материалов для строительства основан на стоимости и эффективности противостояния нагрузкам и напряжениям, действующим на конструкцию.Как инженер-строитель, я работаю со своими клиентами, чтобы выбрать тип материалов, используемых в каждом проекте, в зависимости от размера и использования здания.

    Производство строительных материалов — это хорошо организованная и стандартизированная отрасль, способная обеспечить надежные поставки высококачественных материалов для наших конструкций. Производство строительных материалов структурного класса подлежит процедурам контроля качества, которые включают в себя проверки и испытания в соответствии с национальными стандартами. стандарты и научные методы испытаний.

    В обязанности инженера-строителя входит подготовка спецификаций проекта, включая все строительные материалы, применимые стандарты и положения, которым необходимо соответствовать. Это важная часть любого проекта, чтобы указать качество и свойства материалов, которые будут использоваться.

    Строительные материалы обычно можно разделить на две категории: природные строительные материалы, такие как камень и дерево, и искусственные строительные материалы, такие как бетон и сталь. Обе категории обычно требуют определенного уровня подготовки или обработки перед использованием в структурном применении.Ниже приведен список материалов, которые я чаще всего использовал в проектах по инженерному консалтингу.

    Тип материала Прочность на сжатие образца как сила (Ньютон) на единицу площади (мм2)
    Сталь 300 МПа *
    Бетон 25 МПа *
    Кладка 10 МПа *
    Дерево Параллельно волокну 5 МПа *
    Перпендикулярно волокну 3.5 МПа *

    * МПа: мегапаскаль или Н / мм2

    Бетон:

    Бетон — это композитный материал, состоящий из смеси цемента, таких заполнителей, как песок и щебень, и воды. Свойства бетона зависят от соотношений, используемых при расчете смеси. Поэтому поставщики бетона обычно предоставляют свойства материала и результаты испытаний для каждого участка бетона.

    Свежий бетон можно заливать в формовочные изделия, принимая любую форму или форму, и требуется время, чтобы затвердеть в подобный камню материал.Для достижения большей части прочности бетону требуется до 7 дней, и потребуется особое внимание к его отверждению, чтобы избежать растрескивания или снижения прочности. Бетон очень универсален, и я предпочитаю использовать его в тех областях, где требуется сочетание прочности и долговечности. Например, бетон — отличный материал для строительства фундаментов, где вес конструкции соприкасается с землей. Это требует прочности, чтобы выдерживать нагрузку, а также прочности, чтобы выдерживать контакт с окружающей почвой.

    Бетон очень прочен при воздействии сжимающих напряжений, однако он хрупкий и имеет ограниченную прочность на растяжение. В сочетании со стальной арматурой железобетон прочнее и больше подходит для самых разных конструкций, таких как высокие многоэтажные дома, мосты, дороги, туннели и многие другие.

    Сталь:

    Сталь

    — один из самых прочных строительных материалов с отличной прочностью как на растяжение, так и на сжатие.Благодаря высокому удельному весу он идеален для каркаса высотных зданий и крупных промышленных объектов. Конструкционная сталь доступна в стандартных формах, таких как уголки, двутавровые балки и С-образные профили. Эти формы могут быть сварены вместе или соединены с помощью высокопрочных болтов для создания конструкций, способных противостоять большим силам и деформациям.

    Сталь

    — относительно дорогой строительный материал, поэтому инженер-строитель должен выбрать экономичные размеры и формы в соответствии с фактическими нагрузками на здание, чтобы избежать чрезмерного проектирования.Из-за более высокой стоимости стали я часто получаю вопросы от наших клиентов, которые спрашивают, есть ли способ уменьшить вес и размер некоторых стальных элементов конструкции. Это можно сделать, если можно уменьшить нагрузки на элементы и / или ввести дополнительные вертикальные опоры. Монтаж стали занимает меньше времени по сравнению с бетоном и может быть установлен в любой среде.

    Дерево:

    Древесина использовалась в качестве строительного материала тысячи лет и при правильном уходе может прослужить сотни лет.Это легкодоступный и экономически выгодный природный ресурс с легким весом и высокими механическими свойствами. Он также обеспечивает хорошую изоляцию от холода, что делает его отличным строительным материалом для домов и жилых домов.

    Деревянные заготовки, используемые в строительстве, строгаются и распиливаются на станках с заданными габаритами. Габаритные пиломатериалы имеют широко доступные сечения, такие как 2 «x4», 2 «x6» и т. Д. Это обычно используется при строительстве стен и полов.Вы не поверите, но 2 дюйма на 4 дюйма на самом деле имеют ширину 1 ½ дюйма и высоту 3 ½ дюйма. Древесина больших размеров, называемая древесиной или балками, обычно используется для создания каркасов больших конструкций, таких как мосты и многоэтажные здания. Инженерная древесина — это еще один вид древесины, используемый в строительстве, который состоит из различных видов древесины, склеенных вместе, чтобы сформировать композитный материал, подходящий для конкретных строительных применений. Примерами конструкционной древесины являются клееный брус (клееный брус), фанера и ДВП.

    Из-за своего небольшого веса древесина не является самым подходящим строительным материалом для выдерживания больших нагрузок и не идеальна для длинных пролетов. Древесина редко используется для фундаментов и стен подвала, так как ее необходимо обрабатывать давлением из-за ее контакта с почвой / влагой, что может быть довольно дорогим. В доме с деревянным каркасом фундамент и стены подвала обычно сооружают из железобетона.

    Кладка:

    Строительство каменной кладки — это использование отдельных единиц для создания конструкций, которые обычно используют строительный раствор, чтобы связать единицы вместе.Самым распространенным материалом, который я использую при проектировании каменных конструкций, является бетонный блок, при необходимости с вертикальным армированием стали. Кладка прочна в сопротивлении нагрузкам / напряжениям сжатия, что делает ее идеальной для строительства несущих стен. Другие материалы для кладки включают кирпич, камень и стеклоблок. Кладка — очень прочный и огнестойкий материал, однако он может быть чувствительным к раствору и качеству изготовления.

    В моем офисе возросло использование кирпичной кладки в качестве несущих стен при проектировании многоэтажных зданий.Структурная система обычно состоит из бетонных полов, опирающихся на комбинацию кирпичной кладки и железобетонных стен, в зависимости от количества этажей и величины нагрузки на стены. Кирпичные стены с окнами или проемами нуждаются в горизонтальных балках или перемычках, чтобы выдержать вес стены наверху через проем. Каменная кладка не так удобна для больших проемов в стенах, как бетонный или стальной каркас, но может быть экономичным выбором, если размеры каркаса и проема разумные, а длина сегментов стены не слишком короткая.

    Несущие каменные стены можно складывать друг на друга для строительства многоэтажных зданий. Нагрузкой на кладку стены первого этажа является совокупность всего веса перекрытий над ней. Следовательно, стена нижнего этажа должна быть прочнее, чем стены верхнего этажа. Этого можно добиться путем армирования пустот в нижней кладке стен стальными стержнями и бетонным раствором. Чем больше стальных стержней, тем меньше расстояние между залитыми ядрами — это более прочная кладка стен. Если несущая кирпичная стена не простирается до фундамента из-за наличия необходимых отверстий, таких как проходы для парковки, требуются большие бетонные или стальные передаточные балки для поддержки стены над проемом.

    Есть еще много того, что можно обсудить по теме строительных материалов, но, надеюсь, это даст вам хорошее понимание каждого из основных материалов и приложений, которые лучше всего подходят для каждого из них. Если у вас есть какие-либо вопросы по любому из этих материалов, не стесняйтесь оставлять их в разделе комментариев ниже.

    Все еще хотите узнать больше об основах проектирования конструкций? Получите наше БЕСПЛАТНОЕ полное руководство по основам проектирования конструкций здесь.

    Хотите больше? Присоединяйтесь к другим архитекторам, подрядчикам и инженерам в нашем всеобъемлющем онлайн-курсе уже сегодня!

    Мостафа — профессиональный инженер, увлеченный проектированием конструкций. Он работает вместе с Ноа в Crosier Kilgour & Partners в качестве конструктора и менеджера проекта. Он получил степень бакалавра и магистра в области инженерии в Каире, Египет, и докторскую степень в Университете Манитобы в Виннипеге, МБ, Канада, где он также преподает инженерное дело.Его исследования опубликованы во многих рецензируемых журналах и на международных конференциях. Мостафа имеет более чем 14-летний опыт работы в сфере инженерного консультирования и работал над крупными проектами с архитекторами, владельцами, подрядчиками, другими инженерами и профессионалами во многих странах, включая Канаду, Объединенные Арабские Эмираты, Египет и Саудовскую Аравию.

    Последние сообщения Мостафа Эль-Моги (посмотреть все)

    строительные материалы, строительные материалы, материалы, материалы, используемые в строительстве

    Объясните свойства материалов, используемых для строительства зданий.

    Свойства материалов, связанных с их использованием для строительства зданий, следующие:

    1. Физические свойства: Некоторые из важных физических свойств:

    а. Объемная плотность: это отношение массы к объему материала в его естественном состоянии, включая пустоты и поры. Выражается в кг / м3. Насыпная плотность влияет на механические свойства, такие как прочность, проводимость и т. Д.

    г. Пористость: показывает объем материала, занятого порами.Это отношение объема пор к объему материала. Пористость влияет на многие свойства, такие как прочность теплопроводности, насыпная плотность, долговечность и т. Д.

    г. Долговечность: свойство материала противостоять комбинированному воздействию атмосферных и других факторов известно как долговечность материала.

    г. Плотность: определяется как отношение массы к единице объема.

    e. Объемная плотность: определяется как отношение объемной плотности к ее плотности. Следовательно, он дает объем твердого вещества в материале.Всегда меньше 1.

    ф. Удельный вес: он определяется как отношение массы данного вещества к массе воды при 40 ° C для равных объемов.

    г. Огнестойкость

    ч. Морозостойкость

    и. Устойчивость к атмосферным воздействиям

    Дж. Водопоглощение

    2. Механические свойства: Механические свойства материалов выясняются путем приложения к ним внешних сил. Некоторые из важных физических свойств:

    а.Прочность: Прочность — это способность материала противостоять разрушению под действием напряжений, вызванных нагрузками.

    г. Твердость: твердость — это способность материала сопротивляться проникновению более твердым телом. Шкала Мооса используется для определения твердости материалов.

    г. Эластичность: Эластичность — это способность материала восстанавливать свою первоначальную форму после снятия нагрузки.

    г. Пластичность: когда к материалу прилагается нагрузка, он подвергается остаточной деформации без растрескивания.

    e. Хрупкость

    ф. Усталость

    г. Ударная вязкость

    ч. Истирание

    и. Ползучесть

    3. Химические свойства:

    а. Химическая стойкость: способность строительного материала противостоять воздействию химических веществ, таких как кислоты, соли и щелочи.

    г. Коррозионная стойкость: способность строительных материалов противостоять образованию коррозии в атмосфере называется коррозионной стойкостью.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *